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What are mutable references; what do they mean? The answers to these questions have spawned lots of

important theoretical work and form the foundation of many impactful tools. However, existing semantics

collapse a key distinction: which allocations does a reference depend on?

In this paper, we deconstruct the space of mutable higher-order references.We formalize a novel distinction—

splitting the design space of references not only into higher-order vs (full-)ground references, but also

dependency of an allocation on past vs future allocations. This distinction is fundamental to a thorny issue that

arises in constructing semantic models of mutable references—the type-world circularity. The issue disappears

for what we call predicative references, those that only quantify over past, not future, allocations, and for

non-higher-order impredicative references. We design a syntax and semantics for each point in our newly

described space. The syntax relies on a type universe hierarchy, a la dependent type theory, to kind the types

of allocated terms, and stratify allocations. Each type universe corresponds to a semantic Kripke world, giving

a lightweight syntactic mechanism to design and restrict heap shapes. The semantics bear a resemblance to

work on regions, and suggest some connection between universe systems and regions, which we describe in

some detail.
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1 Introduction
Constructing a semantic model of typed higher-order mutable references is complex. Worse, we find

the complexity of the semantics arises in two ways: gradually, then suddenly [23, Chapter 13]. The

semantics of pure functional languages is simple. Adding mutable state that only accesses ground

data is simple. Adding mutable state that can reference other references, including expressing

cycles, is slightly more complex, but proportional to adding the cycles. Each of these small changes

does not drastically change the complexity, and metatheoretic properties of the original functional

language still hold.

However, once we add the ability to store functions that close over the heap—higher-order
references

1
—the semantics get very complex indeed. We must throw out all the previous semantics

and redo them from scratch. Some of the metatheoretic properties that held, such as termination,

no longer hold.

But why?

Informally, the complexity arises from semantics that allow functions to rely on past and all
future allocations on the heap, including allocation of the function itself

2
. Functions close over local

variables, referred to as the function’s environment. The environment can contain mutable state,

1
We use the term higher-order reference in the sense of Abramsky et al. [1].

2
We interpret the function value as a heap allocated structure, a closure, in this interpretation.
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2 Paulette Koronkevich and William J. Bowman

so in the semantics, each function must have a notion of the local state it captures, to describe its

behaviour as valid only in future evolutions of that initial state. Most semantics describe functions

essentially as store passing: the semantic values expect a semantic heap (the type of which we call

a world) to describe the local state closed over by a function. Then, for a function of type 𝜏1 → 𝜏2,

we describe the semantic value’s type as follows.

J𝜏1 → 𝜏2K = J𝜏1K → World → (J𝜏2K ×World)
The semantics model the behaviour of functions that close over and alter local state by using

the world parameter to describe what locations must be allocated. However, the world can also

contain future allocations, from the perspective of the function’s allocation—allocations that had

not happened when the function was first defined. For example, consider the following program.

𝑟 = new (𝝀 𝑥 .2) : Ref ((Ref Nat) → Nat)
𝑓 = (𝝀 𝑛.(! 𝑟 ) (new ! 𝑛)) : (Ref Nat) → Nat
𝑠 = new 3 : Ref Nat
𝑟 := 𝑓 ; (𝑓 𝑠)

The function 𝑓 dereferences 𝑟 , which means the semantic value of 𝑓 takes a world with a semantic

value for 𝑟 ’s location to describe 𝑓 ’s behaviour. At the point the function 𝑓 is invoked, a new

reference 𝑠 has been allocated; to model this behaviour, the semantic value of 𝑓 will take a future

world from when 𝑓 was first defined. However, allowing 𝑓 to depend on this future world also

means the interpretation of 𝑟 includes 𝑓 as one of the possible values of 𝑟 , so the interpretation of 𝑟

depends on 𝑓 which depends on 𝑟 , etc! Syntactically, this means we can update 𝑟 to be a reference

to 𝑓 , implementing recursion through back-patching, and giving rise to potential non-termination.

Semantically, when functions are stored in references, the world contains the semantic values

of functions that quantify over future allocations! It is precisely the quantification over future

allocations that causes complexity when trying to formally define a world, since relying on future

allocations of the world includes the current world itself.

Formally, we can see this complexity in the type-world circularity, described in detail by Ahmed

[5]. To model a type with a representing set of values, one needs a world to represent locations on

the heap. We represent a type as a function over worlds. A world, a description of the heap, maps

locations to all possible semantic values at a particular type, i.e., the set defined by Type.

Type = World → Set of Values

World = Loc
fin−−→ Type

Ahmed [5] notes that Type essentially has an impossibly large cardinality, in particular one larger

than itself. One can also unroll the definition ofWorld and see that the definition is a function with

a self-reference in a negative position,World = Loc
fin−−→ (World → Set of Values).

Much work on the semantics of higher-order references approximates a solution to the type-world
equations, such as by introducing step-indexing [5], later modalities [8], or by using recursive

domain equations [28]. We’re interested in a different question: does there exist a non-approximate

semantics for a class of higher-order references; that is, can we avoid the type-world circularity?

In this paper, we present how type universes can model a class of higher-order references and

avoid the type-world circularity. Type universes are used to create a type universe hierarchy in

dependent type theories to avoid the type-in-type inconsistency [22] where Type (the type of types)
was considered to have type Type. To avoid the inconsistency, Martin-Löf [31] presented a solution

that used a type universe hierarchy, where Type was stratified into an infinite hierarchy where

Type
0
had type Type

1
which had type Type

2
and so on. The hierarchy eliminated the circularity

that caused the original type theory’s inconsistency, since type universes can only be contained in

some larger universe, and never belong to themselves.
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Type Universes as Kripke Worlds 3

Formally, we use type universes to stratify the heap into regions of allocations, which allows

us to distinguish allocations into regions in the future (higher universes) from the perspective

of allocations in the past (lower universes). In our earlier example, 𝑠 is logically in the past from

𝑓—it could have been allocated first since it does not depend on 𝑓 being allocated. This is reflected

in its universe, which is lower than that of 𝑓 ’s universe. Type universes allow us to describe the

semantics of functions without quantifying over all future allocations but rather any future states of
existing allocations. We define a semantics for a language where there is a correspondence between

a type’s universe and the level of the semantic Kripke world required to interpret the type. Viewed

operationally, the type universe can be seen as the region where the expression’s value will be

allocated on the heap. (We discuss connections to regions à la region-based allocation in Section 5.)

Our contributions include:

• The decomposition of two axes of references previously conflated in the literature: what

order of value a reference quantifies over (first-order/ground vs higher-order), and what

region of allocations, represented by a universe, the reference quantifies over (past or future)

(Section 2). We emphasize that quantifying over future regions introduces cycles.
• The decomposition of references gives rise to the language 𝜆PR with a type universe hierarchy

to describe stratified higher-order references (Section 3), and acyclic full-ground references.

• A syntactic logical relations semantics for 𝜆PR, with stratified Kripke worlds that avoid the

type-world circularity entirely (Section 3.2). We use the relation to prove termination, one of

the metatheoretic properties lost when a terminating typed functional language is extended

with higher-order references;

• An extension of 𝜆PR, 𝜆
◦
PR
, with an impredicative universe in the type universe hierarchy for

cyclic full-ground references, with stratified higher-order references at all higher universes

(Section 4). The language supports both stratified higher-order references and cyclic ground

data structures in the heap.

• An extension of the semantics and proof of termination for cyclic full-ground references

(Section 4.1); we conjecture this extension provides insight into open problems in previous

work on semantics of full-ground references, such as the categorical semantics by Kammar

et al. [25].

2 Background and Main Ideas
Past work typically divides references in three categories: ground, full-ground, and higher-order
references [25, 34]. Ground references store ground (or base) type data, full-ground references store

ground data and other full-ground references, and higher-order references store functions. The
relative scale of the complexity of each kind of semantics can be informally visualized below.

less complex more complex

ground full-ground higher-order

One can also view the scale as the expressivity of the languages.

Possible worlds semantics allow local reasoning about the dynamic heap present with mutable

references. The main idea is that the semantic interpretation of types is indexed by a possible world

that describes the general layout, or shape, of the heap. The world describes the locations allocated
and what possible values the locations could store, and the world grows like the heap when new

locations are allocated.

For example, consider the possible worlds semantics for ground references, where the definition

of a world restricts what can be stored in locations. A world is a map from a finite number of
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4 Paulette Koronkevich and William J. Bowman

locations to the ground type stored at that particular location.

World = Loc
fin−−→ G

G is the set of syntactic ground types, like G = {Nat,Bool}. Given this definition of a world, the

language modeled will have the same restriction in expressivity, where typed references can only

store ground types. The language can restrict references with the following typing rule, where any

new allocated reference is expected to store values of a ground type.

Γ ⊢ 𝑒 : 𝜏 𝜏 ∈ G
Γ ⊢ new 𝑒 : Ref 𝜏

The semantic interpretation of types is indexed by a world, that is, a semantic type is a function

that expects a world and gives the semantic P(Value) representing a type.

Type =World → P(Value)

For example, the semantics of ground types is defined as follows:

JNatK(𝑊 ) = N
JBoolK(𝑊 ) = {true, false}

The semantic values of Nat is the set of all natural numbers, and the semantic values of Bool is the
set of values true and false. The interpretation of these ground types is simple in the sense that

they do not depend on the current world𝑊 .

The world𝑊 is key for the semantics of mutable references. We model a type Ref 𝜏 (where

𝜏 ∈ G) by the set of all locations in world𝑊 that map to type 𝜏 . The possible values for those

locations are any syntactically well typed term, since they do not depend on any allocations. This

means the interpretation of the values of locations in the world do not themselves depend on any

world.

JRef 𝜏K(𝑊 ) = {ℓ |𝑊 (ℓ) = 𝜏}

For example, given the world𝑊1 = {𝑙1 : Nat, 𝑙2 : Bool} the interpretation JRef NatK(𝑊1) = {𝑙1},
since 𝑙1 : Nat ∈𝑊1 and JRef BoolK(𝑊1) = {𝑙2}, since 𝑙2 : Bool ∈𝑊1.

To describe possible worlds semantics for full-ground references, we can essentially follow the

same formula. However, instead of G, our worlds now map to syntactic full-ground types F that

include types Ref 𝜏 where 𝜏 ∈ F .

World = Loc
fin−−→ F

The syntax is similarly restricted to only allow references to contain full-ground types. Cyclic

references can allow the allocation of cyclic data structures, which may require more care in the

semantics depending on the intended structure of the model. We describe a full-ground model in

more detail in Section 4.

Mutable references that store functions that close over the heap—higher-order references—cause

the semantics to suddenly increase in complexity; to see why, we review the semantics of functions

in the presence of mutable references. Functions close over some local environment which can

include values from the dynamic heap. The computation inside of a function can also affect the

heap by updating or allocating more values. Furthermore, a function is a suspended computation

with respect to a particular heap, but may be applied (and thus compute) in a later evolution of the

heap. The semantics of functions require using a future world, i.e., the world that exists later when

the function is invoked compared to when the function was created. For example, a future world

can be a world where some additional values have been allocated on the heap after the function was

created. The semantics describe functions of type 𝜏 → 𝜏 ′ in world𝑊 as semantic functions taking

a semantic value 𝜏 in some future world from𝑊 and producing a semantic value 𝜏 ′ in another
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Type Universes as Kripke Worlds 5

future world (because the function body is a computation that itself may perform some allocations).

We describe the semantics formally, where𝑊 ′ ⊒𝑊 describes a future world𝑊 ′
from𝑊 .

J𝜏 → 𝜏 ′K(𝑊 ) = {𝜆𝑥.𝑒 | ∀𝑊 ′ ⊒𝑊, 𝑣 ∈ J𝜏K(𝑊 ′) .∃𝑊 ′′ ⊒𝑊 ′ .𝑒 [𝑥/𝑣] ∈ J𝜏 ′K(𝑊 ′′)}

The semantic values of 𝜏 → 𝜏 ′ at world𝑊 are functions 𝜆𝑥 .𝑒 that given some 𝑣 ∈ J𝜏K(𝑊 ′), i.e.,
values in 𝜏 in any future world𝑊 ′

, have a body 𝑒 with 𝑥 substituted for 𝑣 in the interpretation of

𝜏 ′ at some future world𝑊 ′′
.

To model higher-order references, we must change the definition of worlds. The world can

no longer be a map from locations to syntactic types, but must instead map locations to sets

of semantic values, because the semantic values of functions now rely on a particular world𝑊 .

Not every function of type 𝜏 → 𝜏 ′ can be stored at a location expecting type 𝜏 → 𝜏 ′, but only
particular functions that can be invoked from a future world of𝑊 . For example, given a world

{ℓ ′ : Nat → Nat}, it may be safe to store a function 𝜆𝑛 : Nat.(! ℓ) in location ℓ ′. However,
determining whether the storage is safe requires that ℓ stores a semantic value that behaves like

type Nat, and determining what ℓ stores requires a world. This means the interpretation of values

of locations in the world depend on particular worlds, and it’s possible for a world to depend on

itself!

If we change the definition of a world to store semantic values and we still have semantic types

rely on a world, a circularity emerges known as the type-world circularity.

Type = World → P(Value)
World = Loc

fin−−→ Type

The definition of worlds relies on itself in a negative positionWorld = Loc → (World → P(Value)).
Ahmed [5] pointed out that such equations have no solution due to the cardinality of theWorld and

Type sets, which are made inconsistently large by being defined in terms of each other (and thus,

themselves). The type-world circularity is why the complexity gap between full-ground references

and higher-order references is so large.

less complex more complex

ground full-ground higher-order

the type-world circularity gap

When encountering a circularity, one can try to instead approximate the circular definitions.
Ahmed [5] does so by using step-indexed logical relations to model languages with higher-order

references, where the type-world circularity is side-stepped using a decreasing number 𝑘 . Using

step-indexing, the definitions become:

Type𝑘+1 = World𝑘 → P(Value)
World𝑘 = Loc

fin−−→ Type𝑘

Unrolling World𝑘 , we have the following consistent definition World𝑘 = Loc → (World𝑘−1 →
P(Value)). The cardinality of Type𝑘 no longer relies on itself but now relies on a smaller Type𝑘−1. The
decreasing metric 𝑘 comes from enumerating the number of steps of reduction that an expression

takes. Type𝑘 is an approximation of Type, so one can show a type is in Type by instead showing a

type is in Type𝑘 for all possible number of steps 𝑘 . Other works use more advanced mathematics

that allow reasoning about a solution to the circularity, like recursive domain equations [28].

2.1 Our contribution
In this paper, we ask (and answer): what kinds of functions can we store in references before the

type-world circularity appears in the semantics?
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6 Paulette Koronkevich and William J. Bowman

higher-order

less complex

ground full-ground

the type-world circularity gap

restricted 
higher-order

We can start by only storing simple functions to check if the semantics still has a circularity.

By simple, we mean constant functions or the identity function: in particular, functions are closed
and pure, i.e., do not rely on any local values or state in their environment. Semantically, we can

store these functions on the heap without any regard to their behaviour in future worlds: closed

functions will definitely not alter the state of the heap. This means we can pull our definitions of

worlds back to what we had for full-ground and ground references: a world maps locations to a set

of types C which includes types 𝜏 →𝑐 𝜏
′
of closed functions.

World = Loc
fin−−→ C

We see that references storing closed functions do not create a circularity in the semantics like the

usual higher-order references.

However, closed functions are highly restricted, and we would like to see how far we can expand

the expressivity of functions we store in references. A desired feature of functions is that they can

close over a local environment including state and perform computations that affect the state. We

could include storing functions that may close over local pure values that do not rely on the heap,

and functions that may close over only ground references.

We can ultimately induce a stratification: the semantics of functions that close over local state

with only ground references (say of type 𝜏 →G 𝜏 ′) rely on our world definition from before.

World1 = Loc
fin−−→ G

The numbered index of World1 has nothing to do with a semantic approximation, but rather

describes what the world stores (in this case G). We still index the semantic interpretation with a

world, but this time with a ground heapWorld1.

Type =World1 → P(Value)
But once we want to model storing functions 𝜏 →G 𝜏 ′ on the heap, we still have that the semantic

values of 𝜏 →G 𝜏 ′ rely on𝑊𝑜𝑟𝑙𝑑1. To avoid a circularity, we define another world structure for

heaps that specifically contain these kinds of semantic values.

World2 = Loc
fin−−→ (World1 → P(Value))

In these semantics, we still do not encounter a circularity, but have two different notions of worlds:

World1 storing only ground types, andWorld2 storing the semantic values that close overWorld1.
We change our semantic interpretations of functions 𝜏 →G 𝜏 ′, as these functions do not need to

behave in all future worlds𝑊 ′
(which would includeWorld2 and cause a circularity) but only future

worlds fromWorld1.

J𝜏 →G 𝜏 ′K(𝑊1) = {𝜆𝑥.𝑒 | ∀𝑊 ′
1
⊒1 𝑊1, 𝑣 ∈ J𝜏K(𝑊 ′

1
) .∃𝑊 ′′

1
⊒1 𝑊

′
1
.𝑒 [𝑥/𝑣] ∈ J𝜏 ′K(𝑊 ′′

1
)}

Notice that these semantics do not require a step index, but rather the ground heapWorld1, and the
quantification over future worlds ⊒1 only quantifies over future ground World1. Functions of type
𝜏 →G 𝜏 ′ provably will not affect any location on the heap beyond locations storing ground values.

To generalize the stratified semantics, we ultimately must enrich the semantics of functions

in the presence of mutable references to reason about what world the functions close over. The

quantification over all possible future worlds𝑊 ′
from a particular𝑊 , i.e.,𝑊 ′ ⊒𝑊 , indicates what

world a function closes over (𝑊 ). We change this𝑊 ′ ⊒𝑊 relationship in the semantics and restrict

the quantification to future worlds at a particular level𝑊 ′ ⊒𝑖 𝑊 . The quantification corresponds

to behaviour in future states of past locations defined in𝑊 , but cannot include future locations in

higher levels 𝑖 + 1 that may include the function itself.
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Type Universes as Kripke Worlds 7

However, a question remains: how do we enrich the syntax to quantify over worlds? A function

of type 𝜏 → 𝜏 ′ closing over world𝑊 is indistinguishable from a function 𝜏 → 𝜏 ′ closing over a

different world𝑊 ′
.

We find that type universes are one elegant way of achieving this goal in both directions: type

universes both enrich the semantics and the syntax. Type universes are used in dependent type

theory to form a type universe hierarchy. In dependent type theory, a type universe hierarchy is

used to circumvent a circularity with respect to the quantification of proofs, which can result in

the unsoundness of the type theory. In our context, however, we use type universes to enforce a

stratified relationship between types and worlds.

We show how type universes can correspond to worlds using our previousWorld1 andWorld2
definitions; we present the corresponding kinding rules for types in universes Type

1
and Type

2
.

Ground reference types depend on World1 = Loc → G in the semantics. We kind these ground

reference types into Type
1
, given that they store Type

0
types, the kind of ground types. Similarly,

for reference types that store functions that close over ground values, i.e., Type
1
in the hierarchy,

we classify these reference types into Type
2
, corresponding to the idea that the semantics of these

types depend onWorld2. Here we use :: to indicate kinding a type.

𝜏 :: Type
0

Ref 𝜏 :: Type
1

𝜏 :: Type
1

Ref 𝜏 :: Type
2

In the semantics, we had that the function type 𝜏 →G 𝜏 ′ only relied onWorld1 for its interpretation;
this was possible because functions of this type only close over ground references, which are in

universe Type
1
. To maintain the correspondence that Type

1
types rely on World1 in the semantics,

𝜏 →G 𝜏 ′ :: Type
1
. To check functions of type 𝜏 →G 𝜏 ′, we can now check the environment for

kinds Type
1
.

Γ, 𝑥 : 𝜏 ⊢ 𝑒 : 𝜏 ′ 1 ≥ max-level(Γ)
Γ ⊢ 𝝀 𝑥 : 𝜏1 .𝑒 : 𝜏 →G 𝜏 ′

The typing rule includes the side condition that the maximum universe level of all the types must

be less than or equal to 1. The maximum universe level is determined by kinding all the types in Γ
to determine their level and taking the maximum.

Generalizing this approach, we intuitively have the following stratified semantic equations, with

Type𝑘 corresponding to a type universe.

Type𝑘 = World𝑘 → P(Value)
World𝑘+1 = Loc

fin−−→ Type𝑘

The semantic type level and world level match, but now worlds that store semantic types at level 𝑘

can only be accessed by semantic types at level 𝑘 + 1. A key difference in these equations compared

to Ahmed [5]’s semantic approximation is that our equations describe a literal stratification seen in

the language. In particular, our semantics of functions takes this stratification into account when

quantifying over future worlds.

We augment the world definition to allow locations to map to types at levels lower than the level

𝑘 , rather than at exactly 𝑘 .

Type𝑘 = World𝑘 → P(Value)
World𝑘+1 = Loc

fin−−→ (𝑖 : Fin(𝑘 + 1)) × Type𝑖

Here, each location in a world is associated with the index of the expected level of the type of

values it stores. The index must be of finite type 𝑘 + 1, that is, any number 𝑖 such that 𝑖 ∈ {0, . . . , 𝑘}.
The world definition mirrors cumulativite type universes in dependent type theory, where a type

in universe Type𝑖 is implicitly also in Type𝑗 when 𝑗 > 𝑖 .
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Fig. 1. The design space of references, including whether values can refer to past or future allocations.

One of the key kinding rules in the type universe hierarchy is the rule for determining the

universe level of reference types. We generalize the previous kinding rules to determine that a

reference type will be one level higher than the type it stores.

𝜏 :: Type𝑖
Ref 𝜏 :: Type𝑖+1

We also consider how to determine the universe level of a function type, to determine a function’s

world level for quantification over future worlds in the semantics. We saw previously 𝜏 →G 𝜏 ′

describes functions that close over ground reference types, i.e., Type
1
types, so 𝜏 →G 𝜏 ′ was in

universe Type
1
as well. Since a function can close over any dynamic values in the heap and possibly

read or update them, the universes of these values must affect the universe of a function type. This

means that the universe level of a function type is not only influenced by the domain and codomain

types, but also the types captured in its environment!

To distinguish functions that rely on different worlds, we include an annotation on the function

arrow. When kinding a function type, the only information available is the universes of the

domain and codomain types, and not the (maximum) universe of the environment. We check that

the universe annotation is consistent with the universe of the domain and codomain types. We

separately check the annotation against the environment when the type is used to check a term.

𝜏1 :: Type𝑖 𝜏2 :: Type𝑗 𝑘 ≥ 𝑖, 𝑗

𝜏1
𝑘−→ 𝜏2 :: Type𝑘

Γ, 𝑥 : 𝜏1 ⊢ 𝑒 : 𝜏2 𝑘 ≥ max-level(Γ, 𝜏1, 𝜏2)

Γ ⊢ 𝝀 𝑥 : 𝜏1 .𝑒 : 𝜏1
𝑘−→ 𝜏2

The typesNat
1−→ Nat andNat

0−→ Nat are both well kinded, but describe different kinds of functions:
the former are permitted to capture references in universe Type

1
, while the latter cannot capture

references at all. This is also reflected in the semantics: the semantics of type Nat
1−→ Nat describes

functions that may be affected by changes in heaps of shape𝑊𝑜𝑟𝑙𝑑1 only, whereas Nat
0−→ Nat

describes functions that are not affected (nor affect) the heap at all (𝑊𝑜𝑟𝑙𝑑0). The behaviour of

semantic values of type Nat
1−→ Nat can only quantify over future states of𝑊𝑜𝑟𝑙𝑑1, and cannot

access (or quantify over)𝑊𝑜𝑟𝑙𝑑2 or above.

Type universes classify stored values into regions of allocations separated by logical time. Higher

universes correspond to regions of allocations that happen in the future from the perspective of

allocations in the past (lower universes). A type at universe Type𝑖 can only refer to types of values

that could have been allocated in the past, which live in lower universes such as Type𝑖−1. However,
“future” and “past” here do not refer to the literal execution order of the program. Instead, they refer
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Type 𝜏 F Unit | Nat | 𝜏
𝑘−→ 𝜏 | Ref 𝜏

Expr 𝑒 F 𝑥 | 𝑛 | ⟨⟩ | 𝝀 𝑥 : 𝜏 .𝑒 | 𝑒 𝑒 | new 𝑒 | ! 𝑒 | 𝑒 := 𝑒

Value 𝑣 F 𝑥 | 𝑛 | ⟨⟩ | 𝝀 𝑥 : 𝜏 .𝑒 | ℓ

Fig. 2. 𝜆PR syntax

to a dependency order between when allocations could have occured given the other allocations

they depend on. Because universes kind types, this does allow some values to “time travel” to

their logically correct region, irrespective of when they actually happen during program execution,

since dependency restricts the kind of types, and not the literal time the allocation happens in the

program.

Distinguishing between past and future allocations also enables distinguishing between full-

ground references and cyclic full-ground references, which are commonly conflated in the literature

[25, 34]. In our predicative universe hierarchy, a full-ground reference ℓ ′ can store another location

ℓ , but ℓ cannot possibly store ℓ ′ to create a cycle. Viewed through the lens of past and future

allocations, ℓ cannot rely on future allocations (which includes ℓ ′), and ℓ ′ can only store ℓ because ℓ

was allocated in the past. A cycle occurs when a reference can store a value from its current region

of allocation.

In Section 3, we present a language 𝜆PR with “predicative” higher-order references: the stratified

higher-order references that result from a predicative type universe hierarchy. The higher-order

values (functions) stored in references can only quantify over past regions. This is made clear in the

semantics of these functions, where the semantic values quantify over future worlds at a particular

level rather than all possible future worlds (which corresponds to general higher-order references).

Full-ground references, i.e., reference to other references, are still permitted, but are also restricted

to past regions, which disallows any cycles in the heap.

We modify the hierarchy in Section 4 to define 𝜆◦
PR

which allows cyclic full-ground references

and predicative higher-order references. The universe hierarchy allows one level of the universe

where stored values can be in the same universe as the reference itself (allowing a limited notion of

quantification over future allocations, i.e., the current world), but functions must always live in

higher universes.

𝜏 :: Type
0

Ref 𝜏 :: Type
0

Γ, 𝑥 : 𝜏1 ⊢ 𝑒 : 𝜏2 𝑘 ≥ max-level(Γ, 𝜏1, 𝜏2, 1 )

Γ ⊢ 𝝀 𝑥 : 𝜏1 .𝑒 : 𝜏1
𝑘−→ 𝜏2

We present our final classification of references in Figure 1, not only by the order of types they

store (first-order/ground vs higher-order), but also by regions of allocation (past vs future), which is

approximated using our type universe hierarchy (the kind of the type). We also label our languages

𝜆PR and 𝜆◦
PR

along the design space.

3 𝜆PR: Predicative and Acyclic References
We present the language 𝜆PR, where PR stands for predicative references, inspired by predicative

universe hierarchies. The type system is essentially standard, with a type universe hierarchy to

enforce heap stratification, which also avoids the type-world circularity in the semantics. We do

this by classifying reference types into a separate universe from the universe of types they store.

The classification of reference types is not enough on its own—functions that may be stored in

references can close over parts of the heap through local variables. We then classify function types

by the maximum universe level of their environment, domain, and codomain types. The hierarchy

maintains the invariant that the universe level is what part of the heap the values depend on. In

the semantics, the invariant is reflected as the level of the Kripke world.
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10 Paulette Koronkevich and William J. Bowman

Γ ⊢ 𝑒 : 𝜏

Γ ⊢ 𝑛 : Nat Γ ⊢ ⟨⟩ : Unit
𝑥 : 𝜏 ∈ Γ

Γ ⊢ 𝑥 : 𝜏

Γ, 𝑥 : 𝜏1 ⊢ 𝑒 : 𝜏2 𝑘 ≥ max-level(Γ, 𝜏1, 𝜏2)

Γ ⊢ 𝝀 𝑥 : 𝜏1 .𝑒 : 𝜏1
𝑘−→ 𝜏2

Γ ⊢ 𝑒1 : 𝜏1
𝑘−→ 𝜏2 Γ ⊢ 𝑒2 : 𝜏1

Γ ⊢ 𝑒1 𝑒2 : 𝜏2
Γ ⊢ 𝑒 : 𝜏

Γ ⊢ new 𝑒 : Ref 𝜏

Γ ⊢ 𝑒 : Ref 𝜏
Γ ⊢ ! 𝑒 : 𝜏

Γ ⊢ 𝑒1 : Ref 𝜏 Γ ⊢ 𝑒2 : 𝜏
Γ ⊢ 𝑒1 ≔ 𝑒2 : Unit

Fig. 3. 𝜆PR typing.

𝜏 :: Type𝑖
𝜏 ∈ {Nat,Unit}

𝜏 :: Type
0

𝜏 :: Type𝑖
Ref 𝜏 :: Type𝑖+1

𝜏1 :: Type𝑖 𝜏2 :: Type𝑗 𝑘 ≥ max-level(𝜏1, 𝜏2)

𝜏1
𝑘−→ 𝜏2 :: Type𝑘

Fig. 4. 𝜆PR kinding.

In Figure 2, we present the syntax of 𝜆PR, a simply typed 𝜆-calculus with higher-order references.

The language includes base types, Nat and Unit, represented by the metavariable 𝑛 and value ⟨⟩
respectively. The rest of the syntax is standard, with new, !, and≔ for initializing, dereferencing,

and updating references. The only exception is the annotation on the function type 𝜏
𝑘−→ 𝜏 , where 𝑘

indicates the universe of the function type and can be read as where to allocate a function of this

type on the heap.

In Figure 3, we present the typing rules of 𝜆PR. The rules are standard, except for the function

case. We check (or could infer) the annotation on the function type against the current environment,

𝑘 ≥ max-level(Γ, 𝜏1, 𝜏2). Determining the level annotation𝑘 relies on kinding the domain, codomain,

and types in Γ. Then the side condition requires that the level 𝑘 of the function type is greater

than or equal to the maximum of type levels of variables in Γ and types 𝜏1 and 𝜏2. The equality

constraint on 𝑘 comes from the fact that functions are immutable, compared to references that are

mutable. A function can only affect the heap through captured variables, which means the function

can live at the same level as the maximum level of its environment, domain, and codomain types. If

it were possible to update the computations inside functions, i.e., functions were mutable, the type

level would also need to increase by one to maintain the separation of past and future allocations.

Notice also that the environment Γ could contain more variables (and thus universe levels) than

the function actually captures, but through contraction one can easily determine the smallest level

of a function type by only the variables captured.

We present the kinding of types in Figure 4. The simple base typesNat andUnit are of Type
0
. The

universe level of a function is determined by the annotation, given that this annotation is greater

than or equal to the universe levels of the domain and codomain types. And finally, a reference

type is one level higher than the level of the type it stores. The combination of the reference type

and function type kinding rules is key to avoid the circularity in the semantics, and forms the basis

of the type universe hierarchy.

In this presentation of 𝜆PR, substitution and weakening do not hold; we discuss how to recover

these properties for a programming language in Section 3.1.

In Figure 5, we present the operational semantics of 𝜆PR, which are standard for languages with

mutable references. We represent the dynamic heap ℎ by mapping locations ℓ to values 𝑣 . Each

expression 𝑒 runs against a heap ℎ, and steps to an expression or value with a corresponding heap.

The heap may have been updated by evaluating some subexpression 𝑒1 of 𝑒 , and by threading

the dynamic heap through evaluation, changes to the heap can be used by further steps. Type
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Heap ℎ F · | ℎ[ℓ ↦→ 𝑣]

⟨ℎ | 𝑒⟩ → ⟨ℎ | 𝑒⟩
⟨ℎ | (𝝀 𝑥 : 𝜏 .𝑒) 𝑣⟩ → ⟨ℎ | 𝑒 [𝑥/𝑣]⟩

⟨ℎ | new 𝑣⟩ → ⟨ℎ[ℓ ↦→ 𝑣] | ℓ⟩ ℓ fresh in ℎ, 𝑣

⟨ℎ | ! ℓ⟩ → ⟨ℎ | 𝑣⟩ ℎ(ℓ) = 𝑣

⟨ℎ | ℓ ≔ 𝑣⟩ → ⟨ℎ[ℓ ↦→ 𝑣] | ⟨⟩⟩

⟨ℎ | 𝑒⟩ →∗ ⟨ℎ | 𝑒⟩
⟨ℎ | 𝑒⟩ →∗ ⟨ℎ′ | 𝑒′⟩

⟨ℎ | 𝑒 𝑒2⟩ →∗ ⟨ℎ′ | 𝑒′ 𝑒2⟩
⟨ℎ | 𝑒⟩ →∗ ⟨ℎ′ | 𝑒′⟩

⟨ℎ | 𝑣 𝑒⟩ →∗ ⟨ℎ′ | 𝑣 𝑒′⟩
⟨ℎ | 𝑒⟩ →∗ ⟨ℎ′ | 𝑒′⟩

⟨ℎ | new 𝑒⟩ →∗ ⟨ℎ′ | new 𝑒′⟩
· · ·

Fig. 5. 𝜆PR operational semantics.

safety with respect to these operational semantics follows as a corollary of the fundamental lemma

(Theorem 3.4).

The dynamic heap ℎ in the operational semantics has no explicit stratification, but the worlds in

the semantics do, so we can visualize the heap as stratified to see the correspondence. We visualize

a few examples of types along the universe hierarchy.

      Ref (Ref Nat)

  Nat → Nat

 Ref (Nat → Nat)  

Nat

Nat → Nat

Bool

Type0Type1Type2
…

      Ref Nat

Nat → Nat

Ref Bool

 Ref (Nat → Nat)  

0

0

12

1

Types climb the hierarchy by allocation on the heap (Ref types), but function types also climb the

hierarchy by capturing values from the heap in their environment.

Now when we switch our thinking to values that inhabit the types along the hierarchy, and

envision the kinds Type
0
,Type

1
,Type

2
as parts of the heap, we then get a visual of the stratified

heap.

…

3

     λ n : Nat . n

true

Heap0Heap1Heap2

      ℓn

λ n : Nat . (! ℓid ) n 

  ℓid

                               ℓb

      ℓnn

 λ n : Nat . (! ℓf ) n

  ℓf
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When values of Type
0
are allocated on the heap, the locations pointing to these values are in Type

1
.

Examples of such values are ℓ𝑛 , ℓ𝑖𝑑 and ℓ𝑏 . One can consider ℓ𝑛 as living in a separate region of the

heap compared to its value 3. Similarly, when a function closes over Type
1
values, the function is

considered of Type
1
, like the function 𝝀 𝑛 : Nat.(! ℓ𝑖𝑑 ) 𝑛. This trend continues up the hierarchy,

where we can see examples like ℓ𝑛𝑛 and 𝝀 𝑛 : Nat.(! ℓ𝑓 ) 𝑛. Notice that all the locations must always

point downwards in the heap, and there is no way to sneak backpatching through a higher-order

reference, since the result is ill-kinded (and thus ill-typed). In the semantics, we can view these

parts of the heap as realizing particular worlds in leveled worldsWorld0,World1,World2, and so on.

We now present the logical relation for 𝜆PR to see how the semantics uses type universes to

correspond to Kripke worlds, and prove termination as a result.

3.1 Weakening and Substitution
In 𝜆PR, the level of the context can change a function type when an unused variable is added, which

means weakening and substitution do not hold. These properties are currently irrelevant in our

semantic investigations, but we could adjust the function typing rule for a programming language.

One alternative condition is to instead determine a function’s type level by the free variables in the

function body, rather than the context as a whole, so the function typing rule changes to:

Γ, 𝑦 : 𝜏1 ⊢ 𝑒 : 𝜏2 𝑘 ≥ max-level(𝐹𝑉 (𝑒), 𝜏1, 𝜏2)
Γ ⊢ 𝜆𝑦 : 𝜏1 .𝑒 : 𝜏1 →𝑘 𝜏2

The resulting programming language is similar to Swift [39], and other recent practical language

designs we touch on further in Section 5.

With this function typing rule, weakening and substitution hold.

Lemma 3.1 (Weakening). If Γ ⊢ 𝑒 : 𝜏 and 𝑥 ∉ 𝑒 and 𝑥 ∉ Γ, then Γ, 𝑥 : 𝜏𝑥 ⊢ 𝑒 : 𝜏 .

Proof. (Sketch). By induction on Γ ⊢ 𝑒 : 𝜏 . In the function case 𝜆𝑦 : 𝜏1.𝑒 , the level 𝑘 is determined

by the maximum level of the free variables in the function body 𝑒 . Since 𝑥 ∉ 𝜆𝑦 : 𝜏1.𝑒 , the free

variables of 𝑒 do not change, and the level 𝑘 stays the same. □

Lemma 3.2 (Substitution). If Γ, 𝑥 : 𝜏𝑥 , Γ
′ ⊢ 𝑒 : 𝜏 and Γ ⊢ 𝑣 : 𝜏𝑥 , then Γ, Γ′ ⊢ 𝑒 [𝑥/𝑣] : 𝜏 .

Proof. (Sketch). By induction on Γ ⊢ 𝑒 : 𝜏 . In the function case 𝜆𝑦 : 𝜏1.𝑒 , the level 𝑘 is determined

by the maximum level of the free variables in the function body 𝑒 . There are two cases: either

𝑥 ∈ 𝐹𝑉 (𝑒) and affects the maximum level 𝑘 , or 𝑥 ∉ 𝐹𝑉 (𝑒) and the maximum level 𝑘 remains the

same as before. When 𝑥 ∈ 𝐹𝑉 (𝑒) and affects the maximum level 𝑘 , we may end up with a level

𝑗 < 𝑘 after performing the substitution, since 𝑥 ∉ 𝐹𝑉 (𝑒) after substitution. In this case, we can still

pick the previous higher 𝑘 rather than the lower 𝑗 to fulfill 𝑘 ≥ max-level(𝐹𝑉 (𝑒), 𝜏1, 𝜏2). □

3.2 Logical Relation and Proof of Termination
Our logical relation relies on an index: the type universe level. Our relation interprets types as sets

of expressions that step to a value, and we show the value only depends on the Kripke world dictated

by its universe level. We then prove all well typed expressions in 𝜆PR are in the set associated with

their type in Theorem 3.3. To be in the set associated with its type, an expression must step to a

value, which allows us to conclude that all well typed expressions terminate. A full introduction of

proving termination with logical relations can be found in standard textbooks [17].

Traditionally, logical relations are divided between an expression relation and a value relation—
relations over syntactic types to semantic values. This divide corresponds nicely to the idea that

expressions step and values do not. We define the expression relation for 𝜆PR with respect to the

operational semantics presented in Figure 5. The value relationVJ𝜏K gives the set of values that
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VJNatK0 (𝑊0)
def
= N

VJUnitK0 (𝑊0)
def
= {⟨⟩}

VJRef 𝜏K𝑖+1 (𝑊𝑖+1)
def
= {𝑙 |𝑊𝑖+1 (𝑙) = (𝑖,VJ𝜏K𝑖 )}

VJ𝜏𝑖
𝑘−→ 𝜎 𝑗 K𝑘 (𝑊𝑘 )

def
= {𝝀 𝑥 : 𝜏 .𝑒 | ∀𝑊 ′

𝑘
⊒𝑘 𝑊𝑘 , 𝑣 ∈ VJ𝜏K𝑖 (⌊𝑊 ′

𝑘
⌋𝑖 ) .𝑒 [𝑣/𝑥] ∈ EJ𝜎K𝑗 (⌈𝑊 ′

𝑘
⌉)}

VJ𝜏K𝑖 (W) def
= VJ𝜏K𝑖 (⌊W⌋𝑖 )

Fig. 6. Value relation for 𝜆PR types.

represent (or behave like) 𝜏 and the expression relation EJ𝜏K gives the set of expressions that step
to a 𝑣 ∈ VJ𝜏K.
As summarized previously in Section 2, one has to model the heap shape to define a semantics

for a language with mutable references, since expressions access and modify the heap. The shape

of a heap is modelled using a world, a finite map from locations to sets of semantic values of types.

Since each location is mapped to a set of all possible semantic values, the world can represent the

shape of any particular heap.

To define worlds for the value relation, we refer back to our semantic equations from Section 2.

Type𝑘 = World𝑘 → P(Value)
World𝑘+1 = Loc

fin−−→ (𝑖 : Fin(𝑘 + 1)) × Type𝑖

The semantic values for a type 𝜏 rely on a particular world at level 𝑘 , which is determined by the

universe level of the type. The world at level 𝑘 contains locations mapping to a type at level 𝑖 such

that 𝑖 < 𝑘 , which guarantees values at level 𝑘 only depend on level 𝑘 and below.

A heap that realizes a world World𝑘 is a heap that maps locations of type 𝜏 :: Type𝑖 such that

𝑖 < 𝑘 . However, according to our operational semantics in Figure 5, expressions step with a heap

with no restrictions on what type of values are allocated. We need another kind of world to describe

heaps where locations can be mapped to values at any level. This world, which we call a “general”

world, is the world we use for the definition of the expression relation and consists of a product of

worlds at individual levels.

World = ∀𝑖 ∈ N.World𝑖
We distinguish these general worlds W ∈ World using a boldface font, and use names without

indices.

Ultimately these leveled worlds World𝑘 support an interpretation of types that indicates where
values are allocated, based on their universe level. If we alternatively allowed the value relation

to be defined with respect to a general worldW, we would encounter the type-world circularity.

Expressions are evaluated with heaps mapping locations at any level and are defined with respect to

general worlds. This gives the property that 𝑒 can be evaluated in any heap that may have locations

beyond what the value of 𝑒 depends on, i.e., 𝑒 may use locations only locally during evaluation, a

property that can validate more program equivalences (e.g., let 𝑥 = (new 3) in 𝑒 ≡ 𝑒 when 𝑥 ∉ 𝑒).

However, because the expression 𝑒 has a type level Type𝑖 according to our type universe system,

we know eventually its value can be restricted to the interpretation atWorld𝑖 . Because the interpre-
tation of a value can be restricted toWorld𝑖 , the value relation is defined over leveled worlds. The

expression relation is also indexed by the universe level to reflect that eventually, the final value

is restricted to the leveled world at the index. These definitions reinforce that our type universe

hierarchy describes where a value is allocated, and what prior allocations are depended on.

We present the value relation in Figure 6, where the index of the relation corresponds to the

universe level of the type. We use italicized notation𝑊 to represent a particular world at a particular

level, and usually include the level in the name, so𝑊𝑖 ∈ World𝑖 . The resulting sets are simply sets
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Leveled World Extension
𝑊 ′

𝑘
⊒𝑘 𝑊𝑘 ⇐⇒ dom(𝑊𝑘 ) ⊆ dom(𝑊 ′

𝑘
) ∧ ∀𝑙 ∈𝑊𝑘 .𝑊

′
𝑘
(𝑙) =𝑊𝑘 (𝑙)

General World Extension
W′ ⊒ W ⇐⇒ ∀𝑖 ∈ N.dom(W𝑖) ⊆ dom(W′𝑖) ∧ ∀𝑙 ∈ (W𝑖) .(W′𝑖) (𝑙) = (W𝑖) (𝑙)

Leveled Lowering ⌊_⌋_ : World𝑘 → (𝑖 : Fin(𝑘 + 1)) → World𝑖
⌊𝑊𝑘 ⌋𝑖 = {(𝑙, 𝑗,R) | 𝑗 < 𝑖 ∧ (𝑙, 𝑗,R) ∈𝑊𝑘 }

General Lowering ⌊_⌋_ : World → (𝑖 : N) → World𝑖
⌊W⌋𝑖 = (W 𝑖)

Lifting ⌈_⌉ : World𝑘 → World

⌈𝑊𝑘 ⌉ = 𝜆𝑖.

{ {(ℓ, 𝑗,R) | 𝑗 < 𝑖 ∧ (ℓ, 𝑗,R) ∈𝑊𝑘 }, 0 < 𝑖 ≤ 𝑘

𝑊𝑘 , otherwise

Fig. 7. Additional definitions for worlds.

of values, which is standard, but what is more interesting is the associated Kripke world structure.

The value relation indexes the world at the same level as the universe, avoiding the type-world

circularity and ensuring that values are not depending on locations beyond their world level. Values

at Type
0
are pure, so there is no need for a world for their interpretation. We define World0 as the

empty map (i.e., a finite map mapping no locations).

The value relation for a reference type Ref 𝜏 is indexed by a number 𝑖 + 1, since the universe

level of Ref 𝜏 is always 𝑖 + 1 for 𝜏 ’s level 𝑖 . The world associated with the type Ref 𝜏 is also at level

𝑖 + 1. Then, the set of values for type Ref 𝜏 is all the locations in the current world that map to

the set of values associated with 𝜏 , i.e.,VJ𝜏K𝑖 . The level of worlds associated with such values is

necessarily lower than that of the current world𝑊𝑖+1, since the set is indexed by 𝑖 .

The value relation over a function type is defined over domain and codomain types annotated

with their kind, 𝜏𝑖 and 𝜎 𝑗
. Kinding types is easy as shown in Figure 4, and the levels are necessary

for indexing the relations for 𝜏 and 𝜎 correctly. The set contains functions that given any value 𝑣 in

the value relation for the domain type 𝜏 , the body of the function 𝑒 with the parameter 𝑥 substituted

with 𝑣 is in the expression relation for 𝜎 .

The set of values for a function type 𝜏
𝑘−→ 𝜎 relies on additional definitions for worlds, summarized

in Figure 7. The first definition is world extension ⊒𝑘 over leveled worlds, which describes a future
world𝑊 ′

𝑘
with respect to the world𝑊𝑘 , and is only defined over worlds at the same level 𝑘 . World

extension is necessary because a function can be applied later in a future heap, and so the semantics

must include function values valid in future worlds. The relation guarantees that𝑊 ′
𝑘
has as many

locations as𝑊𝑘 at the same types, but𝑊 ′
𝑘
may have additional locations allocated. We also define

world extension for general worldsW′
andW, which is essentially defined as ⊒𝑘 at all levels.

The next definition lowers a world𝑊𝑘 to level 𝑖 (⌊𝑊𝑘⌋𝑖 ), given that 𝑖 ≤ 𝑘 . Lowering a world

is necessary since the values in the relation VJ𝜏K𝑖 rely on a world indexed at the same level 𝑖 .

However, the future world𝑊 ′
𝑘
in the function case is at level 𝑘 , which is potentially incompatible

with level 𝑖 . We use the lowering operation to remove all locations that map to types with levels

higher than level 𝑖 − 1. Each location 𝑙 is associated with an index 𝑗 , and lowering keeps mappings

(𝑙, 𝑗,R), where 𝑗 < 𝑖 (and so R is 𝑇𝑦𝑝𝑒 𝑗 ). The resulting world ⌊𝑊 ′
𝑘
⌋𝑖 is a World𝑖 since all locations

map to types with level 𝑗 where 𝑗 < 𝑖 . The lowering operation can be considered a form of semantic

garbage collection.

To mediate between worlds at a particular level (World𝑖 ) and general worlds (World), we have
an operation that lifts a world𝑊𝑘 to a general world shown in Figure 7. The lift operation can be

considered a “cast” from a leveled world to a world that allows allocations at higher levels. For each

level 𝑖 < 𝑘 , we reconstruct aWorld𝑖 consisting of locations from𝑊𝑘 less than 𝑖 . For levels higher
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EJ𝜏K𝑖 (W) def
= {𝑒 | ∀W′ ⊒ W,W′ ⊢ ℎ′ .⟨ℎ′ | 𝑒⟩ →∗ ⟨ℎ′′ | 𝑣⟩∧

∃W′′ ⊒ W′ .W′′ ⊢ ℎ′′ ∧ 𝑣 ∈ VJ𝜏K𝑖 (W′′)}

Fig. 8. Expression relation.

than 𝑘 , locations with higher levels have yet to be allocated, but all other locations lower remain

the same as𝑊𝑘 .

The expression relation defined in Figure 8 describes the set of terminating expressions associated

with a type 𝜏 at universe level 𝑖 . The set consists of expressions that step to a value 𝑣 in the value

relation for 𝜏 at level 𝑖 , that is,VJ𝜏K𝑖 . We need to define how our heaps ℎ realize the general worlds

W, which we write as W ⊢ ℎ. The realization ensures all expressions step to a value with a heap

that “matches” the world the relation is indexed over.

W ⊢ ℎ ⇐⇒ dom(ℎ) =⋃
𝑖∈N dom(W 𝑖) ∧ ∀𝑙 ∈ ℎ.ℎ(𝑙) ∈ (W𝑖) (𝑙) (⌊W⌋𝑖 )

Since the heap maps values at different levels, then the domain should match the domain of W
at all possible levels. The value that the heap maps to a location should be in the expected set of

values mapped by W, given that W is lowered to the appropriate level. The level of the location in

ℎ used to index W correctly for a particular level is given by the index of the relation when needed

in the subsequent proof.

There are three worlds W, W′
, and W′′

in the expression relation. The world W is the model of

the minimum or initial heap needed for evaluation. Expressions can be evaluated in heaps larger

than the initial worldW, which corresponds to a heap ℎ′ realizing the future worldW′
. The heap ℎ′

contains the same locations as W′
, but maps each location to a single value from the value relation

mapped by W′
. There is a final heap at the end of evaluation ℎ′′, and there must exist a future

worldW′′ ⊒ W′
related to ℎ′′. Finally, the value 𝑣 resulting from evaluation is in the value relation

for type 𝜏 , with the final world W′′
lowered to 𝑖 since 𝑣 does not rely on any part of the heap

higher than 𝑖 . Lowering also maintains the stratification invariant since values such as functions

are guaranteed not to depend on the heap at levels greater than 𝑖 , and thus these levels can be

“deallocated”.

We prove 𝜆PR terminating by proving the fundamental lemma (Theorem 3.3) for the relation, that

is, every well typed expression in 𝜆PR is in the expression relation. Given every well typed expression

is in the expression relation, every expression steps to a value. Because the relation is defined

over closed expressions, we must define a relation-respecting substitution 𝛾 (mapping variables to

values) with respect to a typing context Γ to close expressions. These kinds of substitutions 𝛾 are

defined in the usual manner using a context relation GJ·K. Variables are mapped to values in the

value relation, and in our case we must define the context relation with respect to a general world

W, as different variables have different types at various universe levels.

GJ·K(W) def
= ∅

GJΓ, 𝑥 : 𝜏K(W) def
= {𝛾 [𝑥 ↦→ 𝑣] | 𝜏 :: Type𝑖 ∧ 𝑣 ∈ VJ𝜏K𝑖 (W) ∧ 𝛾 ∈ GJΓK(W)}

The fundamental lemma states that if an expression 𝑒 is well typed at type 𝜏 with universe level

Type𝑖 , then 𝑒 is in the expression relation for 𝜏 , i.e., 𝑒 steps to a value 𝑣 at type 𝜏 . We extend the

lemma to open terms by using a substitution 𝛾 from the context relation GJ·K(W).

Theorem 3.3. If Γ ⊢ 𝑒 : 𝜏 and 𝜏 :: Type𝑖 , then ∀𝛾 ∈ GJΓK(W).𝛾 (𝑒) ∈ EJ𝜏K𝑖 (W).

We present the key cases of the proof, in particular the cases for functions and references, and

the full proof is in the anonymous supplementary materials. Functions are particularly important,

as we mediate between worlds at level 𝑖 , 𝑗 , and 𝑘 , and prove that a function body does not reference

a location beyond what is allowed by its universe level.
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16 Paulette Koronkevich and William J. Bowman

Proof. By induction on Γ ⊢ 𝑒 : 𝜏 .
Case: [Lam] We have

Γ, 𝑥 : 𝜏1 ⊢ 𝑒 : 𝜏2 𝑘 ≥ max-level(Γ, 𝜏1, 𝜏2)

Γ ⊢ 𝝀 𝑥 : 𝜏1 .𝑒 : 𝜏1
𝑘−→ 𝜏2

and that 𝜏1
𝑘−→ 𝜏2 :: Type𝑘 , and have that 𝜏1 :: Type𝑖 and 𝜏2 :: Type𝑗 .

The key insight is that the side condition allows us to determine that a lifted leveled world

⌈𝑊 ′
𝑘
⌉ is a future world of a general worldW. This is not true in general, but it is precisely the

side condition 𝑘 ≥ max-level(Γ, 𝑥 : 𝜏1, 𝜏2) that allows us to conclude this in Theorem 3.10.

By unfolding definitions, we must show that given a𝑊 ′
𝑘
⊒𝑘 ⌊W′⌋𝑘 and 𝑣 ∈ VJ𝜏1K𝑖 (⌊𝑊 ′

𝑘
⌋𝑖 ),

we have 𝛾 (𝑒) [𝑣/𝑥] ∈ EJ𝜏2K𝑗 (⌈𝑊 ′
𝑘
⌉).

This follows by induction, if we show the following:

(1) 𝛾 [𝑥 ↦→ 𝑣] (𝑒) = 𝛾 (𝑒) [𝑣/𝑥]
(2) 𝛾 ∈ GJΓK(⌈𝑊 ′

𝑘
⌉)

(3) 𝑣 ∈ VJ𝜏K𝑖 (⌊⌈𝑊 ′
𝑘
⌉⌋𝑖 )

We show (1) by Theorem 3.11, which follows by the definition of the substitution 𝛾 .

We show (2) by Theorem 3.5 which states that, if 𝛾 ∈ GJΓK(W) and W′ ⊒ W, then 𝛾 ∈
GJΓK(W′), which is a property often referred to as world monotonicity. However, at this point
we have to show a bit more, since we only have thatW′ ⊒ W and𝑊 ′

𝑘
⊒𝑘 ⌊W′⌋𝑘 . In this case,

we must show ⌈𝑊 ′
𝑘
⌉ ⊒ W from these facts, which we do in Theorem 3.10. Notice that this

does not hold in general, but because we have 𝑘 ≥ max-level(Γ, 𝑥 : 𝜏1, 𝜏2) from our typing

rule, we can show it holds in this case for these particular worlds. We discuss this property

further in the proof of Theorem 3.10.

Finally, we can show (3) by Theorem 3.8, which states that for 𝑘 ≥ 𝑖 , ⌊⌈𝑊 ′
𝑘
⌉⌋𝑖 = ⌊𝑊 ′

𝑘
⌋𝑖 .

Together with (2) and (3), we conclude with 𝛾 [𝑥 ↦→ 𝑣] ∈ GJΓK(⌈𝑊 ′
𝑘
⌉).

Case: [New] We have

Γ ⊢ 𝑒 : 𝜏
Γ ⊢ new 𝑒 : Ref 𝜏

and Ref 𝜏 :: Type𝑖+1 for some 𝑖 .

The key insight in this case is that we do not require world monotonicity, as is required for

general references. This is because the only future world we consider is also in a higher

universe, and lowering discards the new allocation, so the case follows from the induction

hypothesis.

From induction and unfolding of definitions, we conclude that new 𝛾 (𝑒) steps to a value, in

particular, a fresh location.

⟨ℎ′ | 𝛾 (𝑒)⟩ →∗ ⟨ℎ′′ | 𝑣⟩
⟨ℎ′ | new 𝛾 (𝑒)⟩ →∗ ⟨ℎ′′ [𝑙 ↦→ 𝑣] | 𝑙⟩

All that is left to show is ∃Wf ⊒ W′ .Wf ⊢ ℎ′′ [𝑙 ↦→ 𝑣] ∧ 𝑙 ∈ VJRef 𝜏K𝑖+1 (⌊Wf ⌋𝑖+1).
From induction, we have a particularW′′ ⊒ W′

such thatW′′ ⊢ ℎ′′. We needWf ⊒ W′
such

thatWf ⊢ ℎ′′ [𝑙 ↦→ 𝑣], which means we need someWf that maps location 𝑙 to (𝑖,VJ𝜏K𝑖 ). We

can extend the world W′′
with 𝑙 to (𝑖,VJ𝜏K𝑖 ), which we represent as W′′ [𝑙 ↦→ (𝑖,VJ𝜏K𝑖 )].

We must then show thatW′′ [𝑙 ↦→ (𝑖,VJ𝜏K𝑖 )] ⊢ ℎ′′ [𝑙 ↦→ 𝑣]. We know thatW′′ ⊢ ℎ′′, so all

that is left to show is that 𝑣 ∈ W′′ [𝑙 ↦→ (𝑖,VJ𝜏K𝑖 )] (𝑙)(⌊W′′ [𝑙 ↦→ (𝑖,VJ𝜏K𝑖 )]⌋𝑖 ), which is to

say 𝑣 ∈ VJ𝜏K𝑖 (⌊W′′ [𝑙 ↦→ (𝑖,VJ𝜏K𝑖 )]⌋𝑖 ).
By the lowering operation to level 𝑖 , we also guarantee that 𝑣 does not depend on 𝑙 since

⌊W′′ [𝑙 ↦→ (𝑖,VJ𝜏K𝑖 )]⌋𝑖 = ⌊W′′⌋𝑖 , so we can conclude 𝑣 ∈ VJ𝜏K𝑖 (⌊W′′ [𝑙 ↦→ (𝑖,VJ𝜏K𝑖 )]⌋𝑖 ).
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Finally, we must show 𝑙 ∈ VJRef 𝜏K𝑖+1(⌊W′′ [𝑙 ↦→ (𝑖,VJ𝜏K𝑖 )]⌋𝑖+1), that is,

𝑙 ∈ {𝑙 | ⌊W′′ [𝑙 ↦→ (𝑖,VJ𝜏K𝑖 )]⌋𝑖+1(𝑙) = (𝑖,VJ𝜏K𝑖 )}

Since the world is being lowered to 𝑖 + 1, the mapping 𝑙 ↦→ (𝑖,VJ𝜏K𝑖 ) remains in the lowered

world, and 𝑙 maps to (𝑖,VJ𝜏K𝑖 ) as required. □

Corollary 3.4. If ⊢ 𝑒 : 𝜏 and 𝜏 :: Type𝑖 , then ∃ℎ.⟨· | 𝑒⟩ →∗ ⟨ℎ | 𝑣⟩, that is, we encounter no type
errors during evaluation.

We now present the key lemmas, all of which follow a standard structure, but include small

modifications to adjust for the changes in the world structure, in particular for leveled worlds.

World monotonicity is a standard lemma needed for possible worlds semantics, also called closed
under state extension by Ahmed [5]. World monotonicity usually states that, given a value 𝑣 in the

value relation at worldW, then for allW′ ⊒ W, 𝑣 is also in the value relation at worldW′
. From

an operational standpoint, world monotonicity is a desirable property: a value remains the same

regardless of what additional locations may be allocated on the heap. As a corollary, we extend

world monotonicity from values to contexts. World monotonicity already holds for the expression

relation, because the notion of a possible future worldW′
is already built into the relation.

Lemma 3.5 (World Monotonicity). ∀W′ ⊒ W, if 𝑣 ∈ VJ𝜏K𝑖 (W) then 𝑣 ∈ VJ𝜏K𝑖 (W′).

Proof. We show the key cases of the proof for values 𝑣 by cases on 𝜏 .

Case: 𝜏 = Ref 𝜏
Given 𝑣 = 𝑙 ∈ VJRef 𝜏K𝑖+1 (⌊W⌋𝑖+1) we must show 𝑙 ∈ VJRef 𝜏K𝑖+1(⌊W′⌋𝑖+1), that is,
⌊W′⌋𝑖+1 (𝑙) = (𝑖,VJ𝜏K𝑖 ). Since W′ ⊒ W, we have that ⌊W⌋𝑖+1 ⊒𝑖+1 ⌊W′⌋𝑖+1 by Theorem 3.7,

which means that ∀𝑙 ∈ ⌊W⌋𝑖+1.⌊W⌋𝑖+1 (𝑙) = ⌊W′⌋𝑖+1 (𝑙), in which case we can conclude, as

⌊W⌋𝑖+1(𝑙) = ⌊W′⌋𝑖+1 (𝑙) = (𝑖,VJ𝜏K𝑖 ).
Case: 𝜏 = 𝜏1

k−→ 𝜏1

Given 𝑣 ∈ VJ𝜏1
𝑘−→ 𝜏2K𝑘 (⌊W⌋𝑘 ) we must show 𝑣 ∈ VJ𝜏1

𝑘−→ 𝜏2K𝑘 (⌊W′⌋𝑘 ), that is, ∀𝑊 ′
𝑘
⊒𝑘

⌊W′⌋𝑘 , 𝑣 ∈ VJ𝜏1K𝑖 (⌊𝑊 ′
𝑘
⌋𝑖 ).𝛾 (𝑒) [𝑣/𝑥] ∈ EJ𝜏2K𝑗 (⌈𝑊 ′

𝑘
⌉)

Since 𝑣 ∈ VJ𝜏1
𝑘−→ 𝜏2K𝑘 (⌊W⌋𝑘 ), we already know that this property holds for𝑊 ′

𝑘
⊒𝑘 ⌊W⌋𝑘 .

Since ⌊W′⌋𝑘 ⊒𝑘 ⌊W⌋𝑘 , then any 𝑊 ′
𝑘

⊒𝑘 ⌊W′⌋𝑘 will also be larger than ⌊W⌋𝑘 , that is,
𝑊 ′

𝑘
⊒𝑘 ⌊W⌋𝑘 . Then this property holds for all𝑊 ′

𝑘
⊒𝑘 ⌊W′⌋𝑘 , and we have 𝑣 ∈ VJ𝜏1

𝑘−→
𝜏2K𝑘 (⌊W′⌋𝑘 ) □

Corollary 3.6. ∀W′ ⊒ W, if 𝛾 ∈ GJΓK(W) then 𝛾 ∈ GJΓK(W′).

World monotonicity for reference types relies on the fact that two related general worldsW′ ⊒ W
will remain related when lowered, which follows easily by the definitions of world extension. We

also need to show that lowering a particular world at level 𝑘 to level 𝑖 is the same as lifting it to a

general world, then lowering it to 𝑖 . The proofs of these lemmas are easily shown by definition.

Lemma 3.7. IfW′ ⊒ W, then for any 𝑖 , ⌊W′⌋i ⊒𝑖 ⌊W⌋i

Lemma 3.8. For 𝑘 ≥ 𝑖 , ⌊⌈𝑊 ′
𝑘
⌉⌋𝑖 = ⌊𝑊 ′

𝑘
⌋𝑖 .

We also have that lowering preserves leveled world extension.

Lemma 3.9. If𝑊 ′
𝑘
⊒𝑘 𝑊𝑘 and 𝑖 < 𝑘 , then ⌊𝑊 ′

𝑘
⌋𝑖 ⊒𝑖 ⌊𝑊𝑘⌋𝑖 .
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Proof. Unrolling definitions, we have 𝑊 ′
𝑘

⊒𝑘 𝑊𝑘 ⇐⇒ dom(𝑊𝑘 ) ⊆ dom(𝑊 ′
𝑘
) ∧ ∀𝑙 ∈

𝑊𝑘 .𝑊
′
𝑘
(𝑙) = 𝑊𝑘 (𝑙). We must show ⌊𝑊 ′

𝑘
⌋𝑖 ⊒𝑘 ⌊𝑊𝑘⌋𝑖 ⇐⇒ dom(⌊𝑊 ′

𝑘
⌋𝑖 ) ⊆ dom(⌊𝑊 ′

𝑘
⌋𝑖 ) ∧ ∀𝑙 ∈

⌊𝑊𝑘⌋𝑖 .⌊𝑊 ′
𝑘
⌋𝑖 (𝑙) = ⌊𝑊𝑘⌋𝑖 (𝑙). We have that ⌊𝑊𝑘⌋𝑖 = {(ℓ, 𝑗, 𝑅) | 𝑗 < 𝑖 ∧ (ℓ, 𝑗, 𝑅) ∈ 𝑊𝑘 } and

⌊𝑊 ′
𝑘
⌋𝑖 = {(ℓ, 𝑗, 𝑅) | 𝑗 < 𝑖∧ (ℓ, 𝑗, 𝑅) ∈𝑊 ′

𝑘
}. For all ℓ ∈ dom(⌊𝑊𝑘⌋𝑖 ), we know ℓ ∈ dom(𝑊𝑘 ) by defini-

tion of lowering, and ℓ ∈ dom(𝑊 ′
𝑘
) since dom(𝑊𝑘 ) ⊆ dom(𝑊 ′

𝑘
). We need to show ℓ ∈ dom(⌊𝑊 ′

𝑘
⌋𝑖 ),

and by definition of lowering, since (ℓ, 𝑗, 𝑅) ∈ ⌊𝑊𝑘⌋𝑖 , the same mapping (ℓ, 𝑗, 𝑅) ∈ ⌊𝑊 ′
𝑘
⌋𝑖 since

𝑗 < 𝑖 , and so we conclude ℓ ∈ dom(⌊𝑊 ′
𝑘
⌋𝑖 ). A similar argument holds for checking all the mappings:

∀𝑙 ∈ ⌊𝑊𝑘⌋𝑖 .⌊𝑊 ′
𝑘
⌋𝑖 (𝑙) = ⌊𝑊𝑘⌋𝑖 (𝑙).x □

When proving the function case of the fundamental lemma, we have a particular world at level

𝑘 that we must use for an interpretation of a particular substitution 𝛾 . However, we have that this

substitution 𝛾 is defined over a general world W. We must show that it is safe to use the particular

world at 𝑘 , because the interpretation of this 𝛾 will never need levels higher than 𝑘 . We know this

because the annotation on the function type comes from the highest level in Γ.

Lemma 3.10. GivenW′ ⊒ W,𝑊 ′
𝑘
⊒𝑘 ⌊W′⌋𝑘 , and 𝛾 ∈ GJΓK(W) with 𝑘 ≥ max-level(Γ), we have

𝛾 ∈ GJΓK(⌈𝑊 ′
𝑘
⌉).

Proof. Since 𝛾 ∈ GJΓK(W), we have that ∀𝑣 ∈ 𝛾 .𝑣 ∈ VJ𝜏K𝑖 (⌊W⌋𝑖 ). By Theorem 3.5, we have

that∀𝑣 ∈ 𝛾 .𝑣 ∈ VJ𝜏K𝑖 (⌊W′⌋𝑖 ) sinceW′ ⊒ W. Finally, since𝑊 ′
𝑘
⊒𝑘 ⌊W′⌋𝑘 ⊒𝑘 ⌊W⌋𝑘 by Theorem 3.7,

we can have that ∀𝑣 ∈ 𝛾 .𝑣 ∈ VJ𝜏K𝑖 (⌊⌈𝑊 ′
𝑘
⌉⌋𝑖 ) because we know that 𝑘 ≥ max-level(Γ), we never

need any locations mapped to types higher than 𝑘 for the interpretations of any 𝑣 . Because of the

relationship ⊒ between𝑊 ′
𝑘
and ⌊W′⌋𝑘 , we have all the locations we do need at lower levels. So

each 𝑣 also exists in the interpretation with world ⌈𝑊 ′
𝑘
⌉ because 𝑣 does not depend on any level

higher than 𝑘 . This gives 𝛾 ∈ GJΓK(⌈𝑊 ′
𝑘
⌉). □

Finally, we have that extending a substitution 𝛾 is the same as substituting into an expression 𝑒 .

Lemma 3.11. Given syntactically well formed 𝑒 , closed value 𝑣 , and a substitution 𝛾 mapping
variables to values, we have 𝛾 [𝑥 ↦→ 𝑣] (𝑒) = 𝛾 (𝑒) [𝑣/𝑥]

4 𝜆◦PR: Predicative and Cyclic Full-Ground References
We change our type hierarchy to create a language 𝜆◦

PR
with cyclic full-ground references by

allowing values in references that quantify over future allocations. These references enable creating

mutable cyclic data structures like mutable linked lists, which were not possible in 𝜆PR with acyclic
full-ground references. In 𝜆PR, a location ℓ ′ could store another location ℓ , but the predicative type

hierarchy prevents ℓ from storing ℓ ′ and creating a cycle. The predicative hierarchy restricts ℓ , the

new allocation, to be in a different universe from the past allocation ℓ ′. We can create cyclic data

structures by instead allowing references to be in the same universe as their stored type, i.e., allow
references to refer to future allocations, namely itself.

To combine cyclic full-ground references with stratified higher-order references, we take in-

spiration from impredicative type universe hierarchies. An impredicative type universe hierarchy

allows one universe of types to impredicatively quantify over itself and higher universes, i.e., the
type ∀𝐴 :: Type

0
.Type

0
remains in the impredicative universe Type

0
. The rest of the type universe

hierarchy follows the usual predicative stratification. We use a similar notion in our semantics

for full-ground references, where we create a single type universe level for cyclic full-ground

references, but require the stratification of higher-order references.

This extension shows how stratified higher-order references can be integrated into other full-

ground semantics; in particular, we closely follow the language presented by Kammar et al. [25]. The

semantics developed by Kammar et al. [25] are categorical semantics for full-ground references, and
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Cell Sort 𝑐 ∈ S
Type 𝜏 F ... | Ref 𝜏 | Ref 𝑐 | 𝜏 × 𝜏 | 𝜏 + 𝜏

Expr 𝑒 F ... | ⟨𝑒, 𝑒⟩ | fst 𝑒 | snd 𝑒 | inl 𝑒 | inr 𝑒 | match 𝑒 { inl 𝑥 ↦→ 𝑒 | inr 𝑥 ↦→ 𝑒 }
| letref (𝑥1 : Ref 𝑐1) ≔ 𝑣1 . . . (𝑥𝑛 : Ref 𝑐𝑛) ≔ 𝑣𝑛 in 𝑒

Value 𝑣 F ... | ⟨𝑣, 𝑣⟩ | inl 𝑣 | inr 𝑣
Fig. 9. 𝜆◦PR syntax

they mention that extending to higher-order references would introduce more complexity because

of the type-world circularity. We conjecture that our extension shows how predicative higher-order

references could be integrated into their categorical model without excessively complicating their

semantics.

Extending to cyclic full-ground references involves three parts: adding more data structures

(sums and pairs) for expressing cyclic data, enabling the definition of cyclic references using a

letref form and a signature, and tweaks to the type universe hierarchy to create a universe for

cyclic full-ground types. Most of the extensions in the following figures involve adding sums and

pairs to the language.

One major change is we parameterize the language over a signature Σ, following Kammar et al.

[25]. A signature can be considered as list of top level data declarations, or sometimes called

type ascriptions3 [35], where a type name is defined in terms of other types. We restrict these

type definitions to full-ground types in our case, which in turn restricts cyclic type references to

full-ground types. A signature consists of a countable set of cell sorts 𝑐 ∈ S and we describe the set

of full-ground types G using these cell sorts 𝑐 :

G ::= Nat | Unit | G × G | G + G | Ref 𝑐

The second component of a signature is a function ctype S to G assigning cell sorts to their

full-ground type definition.

As an example, we define a mutable (possibly) cyclic list by defining the following cell sorts.

𝑆 = {linked-list, list-cell}
And define ctype : S → G as:

ctype (linked-list) = Unit + Ref (list-cell)
ctype (list-cell) = Nat × Ref (linked-list)

A signature gives our language the ability to describe cyclic data systematically that might otherwise

require inductive or recursive types. We use a signature to avoid adding additional unnecessary

machinery in the semantics to deal with such types. In particular, recursive types can require a

different semantic interpretation: interpreting types into complete partial orders, or step-indexing

[7]. But the kind of cyclic types we want to create are simple enough that a signature can define

these structures without excessively complicating the semantics.

We present the extended syntax of 𝜆◦
PR

compared to 𝜆PR in Figure 9, assuming a fixed signature

with cell sorts S and function ctype. We extend the types 𝜏 with an additional full-ground reference

type Ref 𝑐 which is a reference type referring to cell sorts 𝑐 . To allow the parallel definition of

cyclic references, we extend the expression syntax with a corresponding letref syntax [25, 29]. The
definition of cyclic references is restricted to values and full-ground reference types. Each 𝑣𝑖 has

access to any other 𝑥𝑖 in the definition block. We extend the language 𝜆◦
PR

with product (𝜏 × 𝜏)

and sum (𝜏 + 𝜏) types and include their corresponding introduction and elimination forms. We

introduce products with the pair notation ⟨𝑒, 𝑒⟩, and introduce sums with left and right injections

inl 𝑒 and inr 𝑒 . We eliminate products with projections fst 𝑒 and snd 𝑒 , and eliminate sums with

pattern matching match 𝑒 { inl 𝑥 ↦→ 𝑒 | inr 𝑥 ↦→ 𝑒 } .
3
Usually, type ascription refers to ascribing a type to an expression 𝑒 , i.e., 𝑒 as 𝜏 .
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Γ ⊢ 𝑒 : 𝜏

· · ·
Γ, 𝑥 : 𝜏1 ⊢ 𝑒 : 𝜏2 𝑘 ≥ max-level(Γ, 𝜏1, 𝜏2, 1 )

Γ ⊢ 𝝀 𝑥 : 𝜏1 .𝑒 : 𝜏1
𝑘−→ 𝜏2

Γ ⊢ 𝑒 : ctype 𝑐
Γ ⊢ new 𝑒 : Ref 𝑐

Γ ⊢ 𝑒 : Ref 𝑐
Γ ⊢ ! 𝑒 : ctype 𝑐

Γ ⊢ 𝑒1 : Ref 𝑐 Γ ⊢ 𝑒2 : ctype 𝑐
Γ ⊢ 𝑒1 ≔ 𝑒2 : Unit

Γ ⊢ 𝑒1 : 𝜏1 Γ ⊢ 𝑒2 : 𝜏2
Γ ⊢ ⟨𝑒1, 𝑒2⟩ : 𝜏1 × 𝜏2

Γ ⊢ 𝑒1 : 𝜏1
Γ ⊢ inl 𝑒1 : 𝜏1 + 𝜏2

Γ ⊢ 𝑒2 : 𝜏2
Γ ⊢ inr 𝑒2 : 𝜏1 + 𝜏2

Γ ⊢ 𝑒 : 𝜏1 + 𝜏2 Γ, 𝑥 : 𝜏1 ⊢ 𝑒1 : 𝜏 Γ, 𝑥 : 𝜏2 ⊢ 𝑒2 : 𝜏
Γ ⊢ match 𝑒 { inl 𝑥 ↦→ 𝑒1 | inr 𝑥 ↦→ 𝑒2 } : 𝜏

Γ, 𝑥1 : Ref 𝑐1, . . . , 𝑥𝑛 : Ref 𝑐𝑛 ⊢ 𝑣1 : ctype 𝑐1 · · ·
Γ, 𝑥1 : Ref 𝑐1, . . . , 𝑥𝑛 : Ref 𝑐𝑛 ⊢ 𝑣𝑛 : ctype 𝑐𝑛 Γ, 𝑥1 : Ref 𝑐1, . . . , 𝑥𝑛 : Ref 𝑐𝑛 ⊢ 𝑒 : 𝜏

Γ ⊢ letref (𝑥1 : Ref 𝑐1) ≔ 𝑣1 . . . (𝑥𝑛 : Ref 𝑐𝑛) ≔ 𝑣𝑛 in 𝑒 : 𝜏

Fig. 10. 𝜆◦PR typing.

𝜏 :: Type𝑖

Nat :: Type
0

𝜏1 :: Type𝑖 𝜏2 :: Type𝑗 𝑘 ≥ max-level(𝜏1, 𝜏2)
𝜏1 × 𝜏2 :: Type𝑘

ctype 𝑐 :: Type
0

Ref 𝑐 :: Type
0

𝜏 :: Type𝑖 𝑖 > 0

Ref 𝜏 :: Type𝑖+1 Unit :: Type
0

𝜏1 :: Type𝑖 𝜏2 :: Type𝑗 𝑘 ≥ max-level(𝜏1, 𝜏2)
𝜏1 + 𝜏2 :: Type𝑘

𝜏1 :: Type𝑖 𝜏2 :: Type𝑗 𝑘 ≥ max-level(𝜏1, 𝜏2, 1 )

𝜏1
𝑘−→ 𝜏2 :: Type𝑘

Fig. 11. 𝜆◦PR kinding.

We present the extended typing rules of 𝜆◦
PR

compared to 𝜆PR in Figure 10. The typing rules

for sums and products are standard. The typing rules for allocating, referencing, and updating

full-ground references defined with respect to a cell sort 𝑐 requires the ctype function. The typing
rule for parallel definition of cyclic references letref checks each 𝑣𝑖 has type ctype 𝑐𝑖 under a

environment extended with each definition 𝑥𝑖 , and checks 𝑒 has type 𝜏 under the same extended

environment.

We present the full type hierarchy of 𝜆◦
PR

in Figure 11, which now includes our impredicative

universe Type
0
. The type hierarchy stratifies reference types over types with level 𝑖 > 0; otherwise,

reference types storing types in Type
0
remain in Type

0
. To stratify function types away from cyclic

full-ground reference types, we classify function types starting at Type
1
, as Type

0
is reserved for

cyclic full-ground reference types. A function type that closes over no references 𝝀 𝑥 : Nat.𝑥 has

type Nat
1−→ Nat at Type

1
, and the stratification of function types then follows as before. Finally,

pair and sum types are in the universe greater than or equal to the maximum of their elements.

Like functions, pairs and sums cannot mutate their contents, but they can contain contents that are

mutable. If our pairs and sums were themselves mutable, and had to maintain the stratification

invariant, their type level would be one level higher than the contents, like stratified reference

types.

We present the extended operational semantics for 𝜆◦
PR

compared to 𝜆PR in Figure 12. The rules

for products and sums are standard. The only nonstandard rule is for the letref form where cyclic
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Heap ℎ F · | ℎ[ℓ ↦→ 𝑣]

⟨ℎ | 𝑒⟩ → ⟨ℎ | 𝑒⟩
· · ·

⟨ℎ | fst ⟨𝑣1, 𝑣2⟩⟩ → ⟨ℎ | 𝑣1⟩
⟨ℎ | snd ⟨𝑣1, 𝑣2⟩⟩ → ⟨ℎ | 𝑣2⟩

⟨ℎ | match inl 𝑣 { inl 𝑥 ↦→ 𝑒1 | inr 𝑥 ↦→ 𝑒2 } ⟩ → ⟨ℎ | 𝑒1 [𝑥/𝑣]⟩
⟨ℎ | match inr 𝑣 { inl 𝑥 ↦→ 𝑒1 | inr 𝑥 ↦→ 𝑒2 } ⟩ → ⟨ℎ | 𝑒2 [𝑥/𝑣]⟩

⟨ℎ | letref (𝑥1 : Ref 𝑐1) ≔ 𝑣1
.
.
.

(𝑥𝑛 : Ref 𝑐𝑛) ≔ 𝑣𝑛
in 𝑒

⟩ → ⟨ℎ[ℓ𝑖 ↦→ 𝑠𝑣𝑖 ]𝑛1 | 𝑒 [𝑥𝑖/𝑙𝑖 ]𝑛1 ⟩
ℓ1, . . . , ℓ𝑛 fresh in ℎ, 𝑠𝑣𝑖 = 𝑣𝑖 [𝑥𝑖/𝑙𝑖 ]𝑛1

Fig. 12. 𝜆◦PR operational semantics.

· · ·
VJRef 𝑐K0 (𝑊0)

def
= {𝑙 |𝑊0 (𝑙) = 𝑐}

VJRef 𝜏K𝑖+1 (𝑊𝑖+1)
def
= {𝑙 |𝑊𝑖+1 (𝑙) = (𝑖,VJ𝜏K𝑖 )}

VJ𝜏𝑖 × 𝜎 𝑗 K𝑘 (𝑊𝑘 )
def
= {⟨𝑣𝑖 , 𝑣 𝑗 ⟩ | 𝑣𝑖 ∈ VJ𝜏K𝑖 (⌊𝑊𝑘 ⌋𝑖 ) ∧ 𝑣 𝑗 ∈ VJ𝜎K𝑗 (⌊𝑊𝑘 ⌋ 𝑗 )}

VJ𝜏𝑖 + 𝜎 𝑗 K𝑘 (𝑊𝑘 )
def
= {inl 𝑣𝑖 | 𝑣𝑖 ∈ VJ𝜏K𝑖 (⌊𝑊𝑘 ⌋𝑖 )} ∪ {inr 𝑣 𝑗 | 𝑣 𝑗 ∈ VJ𝜎K𝑗 (⌊𝑊𝑘 ⌋ 𝑗 )}

Lowering to 0 ⌊_⌋0 : World𝑘 → World0
⌊𝑊𝑘 ⌋0 = {(𝑙, 𝑐) | 𝑐 ∈ S ∧ (𝑙, 𝑐) ∈𝑊𝑘 }

Fig. 13. Value relation for 𝜆◦PR.

allocation occurs by allocating fresh locations ℓ1, . . . , ℓ𝑛 assigned to values 𝑠𝑣1, . . . , 𝑠𝑣𝑛 , written as

[ℓ𝑖 ↦→ 𝑠𝑣𝑖 ]𝑛1 . Each 𝑠𝑣𝑖 corresponds to 𝑣𝑖 [𝑥𝑖/𝑙𝑖 ]𝑛1 , which is 𝑣𝑖 [𝑥1, . . . , 𝑥𝑛/𝑙1, . . . , 𝑙𝑛] for each 𝑣𝑖 . The

whole letref block steps to the body 𝑒 with each 𝑥𝑖 substituted with location 𝑙𝑖 for 1, . . . , 𝑛, written

as 𝑒 [𝑥𝑖/𝑙𝑖 ]𝑛1 .

4.1 The Logical Relation
Our world definitions change with the type universe hierarchy. The stratified definitions of worlds

for references stay the same as before, starting from Type
1
. However, with full-ground references

in universe Type
0
, we change the definition ofWorld0. In 𝜆PR we used the empty map, but in 𝜆◦

PR

we instead have the following definitions.

World𝑘+1 = Loc
fin−−→ (𝑖 : Fin(𝑘 + 1)) × Type𝑖

World0 = Loc
fin−−→ CellSort

As discussed in Section 2, we map locations to their cell sorts (types) rather than to semantic

values. This is because the semantic values of full-ground references are still restricted enough

to behave the same in all future worlds, unlike functions, which capture past worlds and could

behave differently in future worlds. Instead of mapping locations to semantic values at World0, we
avoid a circularity by mapping to the cell sort, and later interpreting the cell sort with a future

world. Because the behavior of the full-ground reference can be determined in any future world, all

we need is the cell sort to determine the behavior later, i.e., at points new allocations have been

performed.

Because of the change in World0, we interpret our type Ref 𝑐 differently from Ref 𝜏 in the value

relation shown in Figure 13. The semantic values of Ref 𝑐 are locations mapping to the cell sort

𝑐 , in contrast to a reference type Ref 𝜏 , where locations are mapped to the semantic values in the
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relationVJ𝜏K𝑖 . We also have additional types 𝜏𝑖 × 𝜎 𝑗
and 𝜏𝑖 + 𝜎 𝑗

added to the value relation. These

are standard definitions except for the universe annotations, where each component type 𝜏𝑖 and 𝜎 𝑗

are annotated with their universe level to guarantee correct indexing into the relation. All other

definitions stay the same, except for lowering, which must account for lowering toWorld0 where
locations map to cell sorts 𝑐 . Heaps realizing worlds must also account for locations that map to

𝑐 , and ensure values are in the interpretation of ctype 𝑐 , that is, ℎ(𝑙) ∈ VJctype 𝑐K(⌊W⌋0) when
𝑙 ↦→ 𝑐 ∈ W.

To see how cyclic data does not result in a cycle in the semantics, we show how to semantically

type a linked list. Consider the following cyclic list, with the same 𝑆 = {linked-list, list-cell} and
ctype : S → G defined previously.

letref (cyclic-list : Ref (linked-list)) ≔ inr head
(head : Ref (list-cell)) ≔ ⟨1, cyclic-list⟩

in cyclic-list

With these cyclic allocations, we have a (non-cyclic) world𝑊0 = {(ℓ𝑐 , linked-list), (ℓℎ, list-cell)},
where ℓ𝑐 is the fresh location associated with variable cyclic-list and ℓℎ is the fresh location

associated with the variable head. We show how the final (cyclic) heap ℎ = {ℓ𝑐 ↦→ inr ℓℎ, ℓℎ ↦→
⟨1, ℓ𝑐⟩} resulting from the expression realizes𝑊0.

ℓ𝑐 ↦→ inr ℓℎ ∈ VJctype (linked-list)K(𝑊0)
⇐⇒ ℓℎ ∈ VJRef (list-cell)K(𝑊0)
⇐⇒ (ℓℎ, list-cell) ∈𝑊0

And similarly:

ℓℎ ↦→ ⟨1, ℓ𝑐 ⟩ ∈ VJctype (list-cell)K(𝑊0)
⇐⇒ ℓ𝑐 ∈ VJRef (linked-list)K(𝑊0)
⇐⇒ (ℓ𝑐 , linked-list) ∈𝑊0

By restrictingWorld0 to store cell sorts, we have cut off any potential circularity in the semantic

model, but can still ensure that values in the heap are of the expected semantic type.

Intuitively, 𝜆◦
PR

is still terminating because there is no mechanism for infinitely dereferencing

one of these cyclic structures. We could extend the language further and maintain termination

with guarded recursive functions, or extend the language with recursion explicitly but still disallow

recursion through the heap using predicative references.

The current model and language only allow cycles in Type
0
; we conjecture that another possible

extension includes cycles that occur at higher levels, as long as the cycle stay at the same level. Type𝑖
cycles would stay in Type𝑖 , but could not extend to higher levels, as dependencies on higher levels

(future allocations) results in general references. The key is to allow cyclic data, but distinguish

cyclic computation into higher levels by bumping the universe level whenever a function closes

over a particular level. This means the interpretation of cycles in Type𝑖 to use aWorld𝑖 that does
not include functions closing over Type𝑖 , avoiding circularities.
To extend 𝜆◦

PR
with (non-guarded) recursive functions and give up termination, we need to

consider the level of recursive functions like rec𝑓 (𝑥) = new (𝑓 𝑥). The kind of the function

type would need some sort of polymorphism or recursive type, since the codomain type requires

𝛼 = Ref 𝛼 . Kinding such recursive functions is not currently possible with our predicative references
system, since the level 𝑘 of the recursive function would need to be determined in terms of the

reference kinding level 𝑘 + 1, and 𝑘 ≠ 𝑘 + 1. We discuss the possible extension and expressivity of

polymorphic universes in Section 5.
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5 Related and Future Work
Stratified Region Type-and-Effect Systems. Ourwork resembles region type-and-effect systems [40],

a type system equipped with an effect system that records reads and writes to regions of the heaps.

In particular, our work resembles stratified region type-and-effect systems.

Boudol [14] (and improved by Amadio [6] and Boudol [15]) showed that the effects in a region

type-and-effect system can be restricted to programs that respect a heap with stratified regions. The

stratification is enforced by constraints over regions to ensure a reference cannot contain a value

from its own region. Region type-and-effect systems annotate a function type with the regions the

function accesses, and in the stratified case, the typical non-terminating program Landin’s Knot [26]

is not well typed. Consider the following attempt at Landin’s Knot. The function 𝑓 accesses a region

𝜎 where a reference 𝑟 is allocated. Trying to update 𝑟 with 𝑓 fails to type check since the effect

system requires that the value put into region 𝜎 cannot contain region 𝜎 .

𝑖𝑑 = (𝝀 𝑥 .𝑥) : Nat
∅−→ Nat

𝑟 = new 𝑖𝑑 : Ref 𝜎 (Nat
∅−→ Nat)

𝑓 = (𝝀 𝑥 .(! 𝑟 ) 𝑥) : Nat
{𝜎 }
−−−→ Nat

𝑟 := 𝑓 ; not well typed since 𝜎 ∈ {𝜎}

Our semantics differ, although there could be an interpretation of our universe system as an

effect system. First, the reasoning principles differ. Region type-and-effect systems use effects to

determine allocation and deallocation behaviour of references from reads and writes for static

memory management. In contrast, our work designs an abstraction to describe the semantics of

a fundamentally different kind of reference, in particular, predicative higher-order references. If

we were to interpret our language as a type-and-effect system, the effect would differ. Region

type-and-effect systems describe what regions are accessed, while our kind system describes where

a value is allocated. In particular, functions in type-and-effect systems have no effect until they are

applied. In contrast, our functions do have an (allocation) effect: they are allocated in a region in

the heap that corresponds to the universe of their type.

Tranquilli [41] extends the stratified region type-and-effect system to allow references that obey

a positive recursive discipline. They observe that translating effectful programs to “memory passing

style” can result in a recursive type equation. A function over region 𝑟 of type 𝐴
𝑟−→ 𝐵 would be

translated to memory passing style 𝐴 → 𝑟 → 𝐵, similar to the semantics of functions in possible

worlds models (though not explicitly stated in these terms). If the region 𝑟 contains types 𝐴
𝑟−→ 𝐵,

then the recursive type equation is akin to 𝑟 = 𝐴 → 𝑟 → 𝐵. They create a region type-and-effect

system that enforces a positiveness requirement instead of a stratification requirement, where the

regions respect positive/negative occurrences like positive recursive types.

Our type universe hierarchy enforces a stratification in universes rather than a positiveness

requirement. We are interested in whether a universe hierarchy could enforce a positiveness re-

quirement rather than a stratification requirement. We conjecture that the positiveness requirement

between universes should still avoid the type-world circularity, that is, a semantic value could refer

to its own world given that the world occurs in a “positive” position.

Demangeon et al. [20] defines a stratified region type-and-effect system where the stratification

is induced by using natural numbers for regions. Their work focuses on providing an alternative

termination proof method based on projecting an impure calculus to a purely functional calculus

developed in prior work [19]. Their calculus seems the most similar to ours out of all the stratified

regions work, given that our presented universe hierarchy is also defined over natural numbers;

however, the effects described by our system are different as we elaborated earlier.
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Region type-and-effect systems tend to have more fine-grained regions than those described by

universes in our system. For example, distinct parts of a data structure can be in different regions,

whereas our type hierarchy currently requires an entire data structure to be in one universe together

(Section 4). Fine-grained regions reduce memory usage, as unused regions of a data structure can be

deallocated separately. Further work is needed to make this connection formal, and we conjecture

that such connection may allow transferring results from region type-and-effect systems to our

languages, such as using fine-grained universes for practical static memory management.

Our type universe hierarchy has a level algebra that gives rise to the heap structure, and we

conjecture the algebra could be altered to get fine-grained universes. A level algebra is defined by:

• The set of levels L and operations over these levels.

• The relationship between a reference type universe level 𝑙𝑟 and what universe it stores 𝑙𝑠
defined by 𝑙𝑟 R 𝑙𝑠 .

• A function’s type universe level 𝑙𝑓 , determined by the universe levels of the input 𝑙𝑖 , output

𝑙𝑜 , and context types 𝑙𝑐 , ..., defined by 𝑙𝑓 F (𝑙𝑖 , 𝑙𝑜 , 𝑙𝑐 , ...).
An algebra requires additional relationships between reference and function type levels since these

are the types of expressions that allocate on the heap. In 𝜆PR, the level algebra is one with L as the

natural numbers with an increment operation, R requires that a reference universe level is one

higher than what it stores 𝑙𝑠 + 1 R 𝑙𝑠 , and F is ≥. In 𝜆◦
PR
, the level algebra is one with L as the

natural numbers with an increment operation, 0 R 0 and 𝑙𝑠 + 1 R 𝑙𝑠 when 𝑙𝑠 > 0, and F is ≥ with 1.

We conjecture that one could divide the heap into fine-grained universes by using a different

level algebra inspired by universe polymorphism. Universe polymorphism allows expressions in

dependent type theories to be polymorphic with respect to universe levels by replacing explicit

natural numbers with a level variable. Recent work by Hou [24] influenced by McBride [32]’s

crude-but-effective stratification has found that using an explicit displacement operator is a simple

and effective mechanism for universe polymorphism. ToL, we could add level variables to represent

names for universes, and define R and F to work over level variables.

To implement McBride’s crude-but-effective stratification version of universe polymorphism,

the language needs an explicit displacement operator on both expressions and types. A value

in one universe of the heap can be “lifted” to another universe using the displacement operator.

For example, given a term 𝑒 of type 𝜏 , suppose we would like to allocate the value of 𝑒 not in

universe Type
0
(where the current system might dictate), but in some region we call 𝛽 . We would

use displacement ⇑𝛽 , an operator also defined over types that updates the kind level accordingly.

Γ ⊢ 𝑒 : 𝜏
Γ ⊢⇑𝛽 𝑒 :⇑𝛽 𝜏

𝜏 :: Type𝛼
⇑𝛽 𝜏 :: Type𝛼+𝛽

Models of General References. There are many models of references, some that use a more

operational approach by defining a logical relation as we have, and others that take a deeper

mathematical or categorical approach. Step-indexed logical relations were introduced by Appel

and McAllester [7] and extended by Ahmed [5] to model references. As discussed in Section 2,

step-indexing logically approximates the semantic definitions one wants in the presence of the type-

world circularity. We focus on how far we can push references before encountering the type-world

circularity, which meant taking the approximation equations “literally” to describe a new model

and language where the index enriches the types through type universes. Ahmed [5] suggested

a stratification in the syntax with a hierarchy of types, but chose the approximation approach

instead to account for quantified types. Notably, Ahmed [5] did not study how functions would be

allocated in the hierarchy, as we do, and did not observe a distinction between dependencies on

past vs future allocations.
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We would like to extend our models to a binary logical relation. The binary relation would allow

us to prove program equivalences by relating two expressions in the relation. We do not foresee

any problems that would prevent this extension; however, the binary case requires more machinery.

In particular, extending to the binary case requires defining related heaps [12, 36]. To enable local

reasoning, the relation must describe disjoint parts of the heap, so that a freshly allocated location

does not interfere with related heaps. These disjoint parts of the heap are more fine-grained than

our current universes. Extending the local reasoning to higher-order references, the heap relation

must be parameterized by a world, since relating two values in the heap requires the values be

related by the relation itself, and a circularity arises again. Ahmed et al. [3] solve this again using

step-indexing, but we conjecture our leveled worlds could avoid this circularity.

Ownership Systems. Ownership restricts references by restricting the usage of references.
Universe types (UT) [18, 21] are an ownership system enforcing an ownership-as-modifier dis-

cipline for object-oriented languages. Despite the similar names, UT do not use a type universe

hierarchy as seen in our work or in dependent type theories, but rather the types enforce an

ownership hierarchy by classifying types into different universes. Similar to a kinding system, each

type in UT is preceded by a universe modifier indicating the relationship to the current reference.

The hierarchy ensures all modifications of an object are done through the object’s owner.

Unlike our kinding system, the universe modifier depends on the relationship relative to the

perspective of the current object, e.g., whether the current object owns another object. For example,

given an object 𝑜 that owns two other objects 𝑜1 and 𝑜2, viewing the object 𝑜2 from the perspective

of 𝑜1 results in the universe relationship peer because 𝑜1 and 𝑜2 are both owned by the same object

𝑜 . However, viewing the object 𝑜2 from the perspective of 𝑜 results in the modifier rep, meaning

the object 𝑜 owns 𝑜2. In contrast, our system keeps the universe of a type fixed, and the universe

does not change depending on perspective of different locations or objects.

Our type system does not provide the same guarantees that ownership systems do, such as safety

in the presence of aliasing. It would be interesting to investigate whether type universe hierarchy

might be modified to reason about aliasing, perhaps taking ideas from UT.

Core L3 [4] achieves termination in the presence of higher-order references using linear capa-

bilities, i.e., permissions to modify and read contents of a mutable reference. L3 supports strong
updates (updates to references can change the type), aliasing, and type safety, and termination is

a side effect of restricting capabilities. Capabilities grant an expression exclusive permission to a

location on the heap. Although not explicitly addressing the type-world circularity, their model

avoids it.

Type = P(Store × Value)
Store = Loc

fin−−→ Value

Since capabilities grant restricted access to the heap, the model pairs up a particular store with each

value based on its capabilities. Notice there is no longer a circularity in these definitions because

the heaps are represented as particular stores.

We could view our type universes as an access restriction to parts of the heap, similar to the

capabilities of L3, but the universe does not ensure exclusive access. A value in universe Type𝑖 can
access universes Type𝑖−1 and below, and is duplicable, but access is restricted in the sense the value

cannot access Type𝑖 or above.

Dependent types. The language F
★
[38] extends a dependent type theory with the ability to

specify and verify effectful code. Ahman et al. [2] describe how the specification can be achieved

through Dijkstra monads. They note that the predicative universe type hierarchy in the dependent

type theory disallows storing stateful functions in the heap, because their heap type heap is in

Type𝑖+1 and any stateful functions (which require a heap) end up being in Type𝑖+1 as well. They
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note that a stratified heap type should be possible, and we assume such an encoding would be

similar to our presentation. The key difference between our work is how universes are used. Our

universes describe the stratified heap, while their type universes are used in the usual way to

stratify types for consistency, which indirectly stratifies the heap encoded as a type.

Future work could extend our language to a dependent type theory. We imagine two separate

universe hierarchies: one for heaps, and one for types. 𝛿CPBV, a dependent type theory with effects

separating values and computations (based on call-by-push-value (CBPV) [27]), features a similar

separation of type universes, with value type universes and effectful type universes [37].

Other practical language designs. We focus on the semantics of predicative higher-order references

to inform future language designs. Like early work on semantics of linear typing and references

(like [4]), these calculi are not yet practical languages, but the semantics of such calculi served as a

foundation for practical languages such as Rust. Nevertheless, recent language and type system

designs equip languages with low-level memory reasoning similar to our calculus of predicative

higher-order references, approaching the same problem from the other direction.

Reachability types, initially presented by Bao et al. [11] and extended by Wei et al. [42], enable

reasoning about aliasing, specifically about the separation of values. Types are annotated with a

reachability qualifier, that is, the set of reachable values/locations. Using these sets of reachable

values and locations, the type system can statically decide separation of values, and can prove that

expressions with disjoint qualifiers can evaluate in parallel. Similar to our type and kind system,

the type system annotates function types with reachable locations, which is determined in part by

the free variables of the function. Our current model is not concerned with aliasing, and cannot

give as strong guarantees about separation as reachability types can. However, we might view our

universes as a coarse-grained abstraction of reachability, and perhaps we could extend the system

along the lines of reachability types to reason about aliasing.

The logical relations model of reachability types by Bao et al. [10] is similar to our’s, but differs

in key ways. The model has a restricted form of world extension ⊒𝐿 , parameterized by a set 𝐿 of

reachable locations, similar to our level restricted world extension ⊒𝑘 . The world is only extended in

terms of locations 𝐿 (all other locations are irrelevant). In contrast to our model, the current model

of reachability types is not compositional. The model relies on unfolding the expression relation

to define the semantics of a function, as the semantics of a function body relies on the reachable

locations from a function’s argument. Like our model, reachability types ensure termination in the

presence of higher-order references, but unlike our model, do not support cyclic references.

Lorenzen et al. [30] equip OCaml’s type system with modes, where types are associated with

additional modes that describe their uniqueness, affinity, and locality, allowing for safe stack

allocation and memory reuse. Similar to our calculus, function types are annotated, but modes

rather than kinds. Functions have separate mode from their domain and codomain modes, and

the mode of a function type is determined with respect to its context. The system uses a lock in

the context to infer the required mode of the function, ensuring that, e.g., a function that uses

global variables is marked as global. Using a modality for a language based on our semantics would

be an interesting avenue for future research. Our initial conjecture is that we could use a similar

presentation, where the context is restricted to a certain level (rather than a certain mode). This

could be similar to how universes are presented in StraTT [16]. The authors observe that the

expressivity of StraTT is restricted compared to MLTT, so there may be also expressivity differences

between kinds and modes for predicative references.

Milano et al. [33] present a type system for fearless concurrency, i.e., freedom from destructive

races and synchronizing only when threads explicitly communicate. Their type system is for an

imperative language without higher-order references, but top-level function types require extra
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information to facilitate reasoning about affected regions. Function types (H ; Γ) ⇒ (H ′
; Γ′; 𝑟, 𝜏)

require a context describing the parameters and their regions (Γ), along with the tracking context

of these regions (H ), and the codomain type describes the effect to these regions in H ′
; Γ′, the

final region 𝑟 , and value codomain type 𝜏 . Our function typing rule also relies on the context,

but in contrast we record the necessary information with a level annotation on the function type.

The authors expose a simpler user-facing syntax for functions based on the principles (1) the

programmer should never explicitly mention regions and (2) “good defaults,”, which we may also

want to consider when designing a practical language from our semantics.

Boruch-Gruszecki et al. [13] present a type system where capabilities are tracked as program

variables, i.e., values are characterized by what variables they capture, to model effects. Their

presentation is a promising direction for a practical language design for our semantics, as our

semantics of functions relies on the universe level of what it captures. Types are annotated with

the program variables they capture (capture sets), which delimites the extent of capabilities and

can model the extent of effects. In contrast, we implicitly track captured variables by dividing types

into universes and level annotations on function types, since the kind of a type can determine its

dependency on the heap. However, we do lose precision on the exact locations values depend on in

the heap because of our course-grained universes; in contrast, capturing types are precise about

the extent of capabilities using capture sets.

Arvidsson et al. [9] use reference capabilities on types to divide a program’s heap into independent

regions, which allows the programmer to chose memory management strategies for each region

of memory. In their region system Reggio, objects within a region can freely refer to each other,

similar to 𝜆◦
PR

where Type
0
references could be cyclic in Type

0
. Types statically enforce region

isolation by restricting regions to having one accessible or “bridge” object, and various capabilities

distinguish between bridge objects, intra-region objects, temporary objects within a scope, and

immutable objects. In contrast, 𝜆◦
PR

only has Type
0
intra-universe objects, and in both 𝜆PR and 𝜆◦

PR

all universes can have multiple reference objects to universes. When extending our semantics to

enable static memory management, we could take inspiration from Reggio and enforce universe

isolation by using a single point of reference for each universe.

6 Conclusion
In this paper, we have only begun an exploration into a new design space of references. We

separate higher-order references and full-ground references into semantically distinct references

by distinguishing dependencies on past and future allocations, which allow the semantics to avoid

the type-world circularity. We use type universes to distinguish allocations into regions in the

future (higher universes) from the perspective of allocations in the past (lower universes). Type

universes allow us to describe predicative higher-order references and acyclic full-ground references;
references that depend on past allocations. However, type universes do not only restrict us to the

past! We also explore the future with cyclic full-ground references through limited impredicativity.

The impredicativity was restricted to one universe to allow references to depend on current (future)

allocation. We also observe some strong similarities to region type-and-effect systems, suggesting

there might be a connection between type universes and regions, which creates another design

space to explore, or that we can take advantage of different allocation patterns for predicative

references.
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