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Abstract. In this paper, we explore a connection between type uni-
verses and memory allocation. Type universe hierarchies are used in de-
pendent type theories to ensure consistency, by forbidding a type from
quantifying over all types. Instead, the types of types (universes) form
a hierarchy, and a type can only quantify over types in other universes
(with some exceptions), restricting cyclic reasoning in proofs. We present
a perspective where universes also describe where values are allocated in
the heap, and the choice of universe algebra imposes a structure on the
heap overall. The resulting type system provides a simple declarative
system for reasoning about and restricting memory allocation, without
reasoning about reads or writes. We present a theoretical framework for
equipping a type system with higher-order references restricted by a uni-
verse hierarchy, and conjecture that many existing universe algebras give
rise to interesting systems for reasoning about allocation. We present 3
instantiations of this approach to enable reasoning about allocation in
the simply typed λ-calculus: (1) the standard ramified universe hierar-
chy, which we prove guarantees termination of the language extended
with higher-order references by restricting cycles in the heap; (2) an ex-
tension with an impredicative base universe, which we conjecture enables
full-ground references (with terminating computation but cyclic ground
data structures); (3) an extension with universe polymorphism, which
divides the heap into fine-grained regions. (This is a fresh perspectives
submission.)

1 Introduction

Many type systems have been designed to reason about memory. But what does
it mean to reason about memory?

A large amount of work is dedicated to safety, ensuring updates, aliasing,
etc., do not cause bugs when reading and writing from memory. For example,
L3 [1] has a type system that enforces safety with strong updates, i.e., updates
that may change the type of already allocated locations on the heap. L3’s type
system focuses on the safety of reads in the presence of these strong updates, and
thus focuses solely on the problem of aliasing. Rust [12] implements a similar
system, enabling reasoning about aliasing in the presence of concurrency.

Some type systems enable reasoning about deallocation. Region type-and-
effect systems [19] were originally designed for static fine-grained memory man-
agement, and Rust follows in this tradition.
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Much of this work reasons about memory indirectly, from how references to
memory are used. In Rust, allocation and deallocation is inferred from usage—
when a value is created, or copied, it is allocated, and it is deallocated when the
value is no longer owned. Regions are also inferred through individual reference
reads and writes. Any heap structure, such as the stack of regions structure [19]
or stratified regions [4,3], is also inferred through reads and writes. L3 turns out
to be terminating, which is enforced indirectly because of the linearity usage
requirement on references, but not because of any direct restriction on structure
of the heap.

We present a theoretical framework for designing type systems to enable
directly reasoning about allocation, by giving a declarative description of allo-
cation. By declarative, we mean that each type declares where values of this
type are allocated on the heap, and parameters of the type system declare what
heap shapes and dependencies are allowed, in contrast to these other type sys-
tems where allocation is inferred from usage of heap references. For the time
being, we do not consider reasoning about aliasing, although we conjecture that
existing designs that track aliasing could be integrated into our type systems.

Our framework is based on a type universe hierarchy, where the underlying
hierarchy can be changed to result in different heap structures. Type universes
are used to eliminate inconsistencies in dependent type theories, which can arise
when the type of types (the universe Type), has type Type. This, and simi-
lar patterns, can lead to inconsistencies by admitting cyclic proofs. A standard
solution to this is to stratify universes, each one a member of the next. Instead
of considering the Type to be in universe Type, dependent type theories use
a universe hierarchy to assign a level to each universe, so Typei is in universe
Typei+1, ensuring consistency. In our framework, each type has a universe, but
the universe describes where values are allocated, and the universe hierarchy
enforces a heap structure for all programs. By changing the universe hierarchy,
or level algebra, we impose different heap structures.

We first present an instantiation of our framework with a standard predicative
universe hierarchy, which enforces a stratified, acyclic heap. Because the heap is
acyclic, we prove this language with higher-order references is terminating. The
language is simplified compared to similar work using stratified regions via a
type-and-effect system [4,3]. Our language does not require tracking of reads or
writes of individual references, nor region inference. We also present the proof
of termination, which relies on a semantic notion of garbage collection based on
universe level. We conjecture that the semantics might be lead to a declarative
syntax for deallocation.

We then abstract this type system to present the main parameters that
change the underlying universe algebra to create different heap structures. We
give two instantiations of this framework with existing type universe hierarchies,
resulting in type systems that enforce different heap structures. In particular,
we design a language with a heap with one level where cycles can occur, based
on universe hierarchies with a single impredicative base universe. We conjecture
the language is still terminating and yields full-ground references [15]. We also
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explore an extension with universe polymorphism, which allows a user to name
regions of the heap and results in a system with more fine-grained regions and
conjecture could be used for static memory management.

In short, we present a fresh perspective on viewing type universes as a sys-
tem for simple, direct, declarative reasoning about allocation—when and where
allocation occurs, and which allocations a computation depends on.

2 Type Universes for Acyclic Heaps

We now study how cycles in the heap can be created with higher-order refer-
ences through a pattern called Landin’s Knot [10]. We show how to eliminate
such cycles in a typed language equipped with a universe type hierarchy. In the
type system we present, Landin’s Knot is ruled out in a purely declarative way,
without any reference usage tracking.

Preventing cycles in the heap is useful to achieve various language design and
implementation goals. Reference counting, used to implement memory manage-
ment, cannot handle (strong) cycles in the heap [13]. Certain cycles through
the heap can lead to unrestricted recursion, which one might instead desire to
control through only explicit recursive constructs. For example, dependent type
theories require strong normalization for decidability of type checking, shown for
example by Jutting [9], and termination might be desired to ensure for fairness
in concurrent settings [4].

Unfortunately, the common wisdom is that higher-order references introduce
cycles in the heap that are difficult to prevent. Landin’s Knot, a pattern that uses
a function capturing a mutable reference and updates that reference to contain
the function itself, is a typical example of these kinds of cycles. This pattern is
illustrated through the following diverging program.

id = (λ x.x) : Nat → Nat
r = new id : Ref (Nat → Nat)
f = (λ x.(! r) x) : Nat → Nat
r := f ;
f 0

Three expressions id, r, and f are defined in this program. The expression
id is the identity function for natural numbers, and r is a reference initialized
with id. The second function f captures the reference r, then expects a natural
number x and and applies the function stored in r to x. The program diverges
because it updates the reference r to store the function f , enabling unrestricted
recursion in f . The function f calls the function stored in r, which is now f
itself, and the program diverges.

We visualize the heap and dependencies on mutable references to better
illustrate the cause of this cycle. In the following diagram, the reference r initially
points to a memory location storing the identity function, and the function f
depends on r. A reference pointing a memory location uses the arrow 7→, with



4 Paulette Koronkevich and William J. Bowman

the location and contents denoted by a box. Code dependent on a reference uses
the arrow → to distinguish from pointing to memory locations.

rλ x.(! r) x λ x.x

After updating r to f , the problematic cycle comes from the combination of
the dependency arrow for f on r and r pointing to f .

r λx.(! r) x

To prevent such cycles, we need to prevent r from containing functions that
depend on r. The first diagram had no cycles, and updates to r with other
functions that are not like f has no such cycles: for example, updating r to
contain the function λx.0.

rλx.(! r) x λx.0

To use a type universe hierarchy for preventing cycles, we consider r and
functions with any dependencies on r to be in the same universe. The values
that r can store will be at a separate universe, so that r cannot be updated with
any value from r’s universe, preventing cyclic dependencies. A type universe
hierarchy similarly prevents circular reasoning in proofs encoded in dependent
type theory, where Typei is considered to be of type Typei+1, and not of type
Typei.

To prevent other potential cycles, we also have to prevent r from pointing to
any expressions in a higher universe than r since such expressions could depend
on r. This additional restriction imposes an acyclic heap by stratifying the heap
such that references can only point “down” in the heap.

 λ x . 0

r  λ x . x 

Type0Type1

λ x . (! r) x 

Type2

s

λ x . (… s)  

…

This diagram may cause déjà vu for those familiar with models of languages
with mutable references, where a similar diagram is also illustrated by Ahmed [2].



Type Universes as Allocation Effects 5

The stratification introduced in Ahmed’s work is used in the model to break the
type-world circularity, which we discuss in more detail in Section 2.1. We reflect
this stratification into the syntax with a type universe hierarchy for a stratified
(and thus acyclic) heap. Since functions are also allocated on the heap, our
diagram here also includes functions and their dependencies on the heap.

The key kinding rule in our type universe hierarchy for a stratified heap is the
rule for determining the universe level of reference types. To require references
to point “downward” in the heap, the universe level of a reference type must be
one level higher than the type it stores. Here we use :: to indicate kinding a type.

τ :: Typei
Ref τ :: Typei+1

Given a type τ in universe Typei, then the type Ref τ is in universe Typei+1.
For example, given id’s type is in universe Type0, then r’s type is in universe
Type1.

To complete the design of these stratified higher-order references, we also
consider how to determine the universe level of a function type, since functions
are also allocated on the heap. The typical predicative function kinding rule in
dependent type theories is essentially as follows, where a function’s universe level
is the maximum of the universe levels of its input and output types.

τ1 :: Typei τ2 :: Typej k ≥ i, j

τ1 → τ2 :: Typek

However, since functions are allocated as closures with code and environ-
ment, the universe information of the environment is lost with this kinding rule.
Without considering a function’s environment, the functions id and f are in the
same universe. But having id and f in the same universe violates the stratified
heap invariant, as f ’s closure contains r. The two functions id and f differ as
closures, since id requires no environment, but the function f ’s environment de-
pends on the reference r. This means that the function id and f , despite having
the same input and output types, will be in different universes based on their
environment. The universe level of a function type is not only influenced by the
input and output types, but also the types captured in its environment!

To implement this, we include an annotation on the function arrow. When
viewing a function type in isolation, the only information available is the uni-
verses of the input and output types, and not the (maximum) universe of the
environment. We check that the universe annotation is consistent with the uni-
verse of the input and output types. We also separately check the annotation
against the environment when the type is used to check a term.

τ1 :: Typei τ2 :: Typej k ≥ i, j

τ1
k−→ τ2 :: Typek

The types Nat
1−→ Nat and Nat

0−→ Nat are both well kinded, but describe
different kinds of functions: the former are permitted to capture references in
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Type τ ::= Unit | Nat | τ k−→ τ | Ref τ

Expr e ::= x | n | ⟨⟩ | λ x : τ.e | e e | new e | ! e | e := e

Fig. 1. λPR syntax

Γ ⊢ e : τ

Γ ⊢ n : Nat Γ ⊢ ⟨⟩ : Unit

x : τ ∈ Γ

Γ ⊢ x : τ

Γ, x : τ1 ⊢ e : τ2 k ≥ max-level(Γ, τ1, τ2)

Γ ⊢ λ x : τ1.e : τ1
k−→ τ2

Γ ⊢ e1 : τ1
k−→ τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2

Γ ⊢ e : τ

Γ ⊢ new e : Ref τ

Γ ⊢ e : Ref τ

Γ ⊢ ! e : τ

Γ ⊢ e1 : Ref τ Γ ⊢ e2 : τ

Γ ⊢ e1 := e2 : Unit

Fig. 2. λPR typing.

universe Type1, while the latter cannot capture references at all. In our example,
f ’s type would be Nat

1−→ Nat since it captures the universe Type1 reference
r. Then r cannot be updated to f , since f is in the same universe Type1,
preventing the cycle.

We now present the full language λPR, where PR stands for predicative refer-
ences, inspired by predicative universe hierarchies. The type system is essentially
standard, with a type universe hierarchy to enforce the heap stratification. The
type system is syntax directed, as is the kinding system, creating a simple, declar-
ative system for higher-order references with termination without complicated
resource tracking.

In Figure 1, we present the syntax of λPR, a simply typed λ-calculus with
higher-order references. The language includes base types, Nat and Unit, de-
noted by the metavariable n and expression ⟨⟩ respectively. The rest of the syntax
is standard, with new, !, and := for initializing, dereferencing, and updating ref-
erences. The only exception is the annotation on the function type τ

k−→ τ , where
k indicates the universe of the function type and can be read as where to allocate
a function of this type on the heap.

In Figure 2, we present the typing rules of λPR. The rules are standard,
except for the function case. Here we check (or could infer) the annotation on
the function type against the current context, k ≥ max-level(Γ, τ1, τ2). This
side condition requires that the level k of the function type is greater than or
equal to the levels of variables in Γ and the levels of types τ1 and τ2. Note that
the context Γ could contain more variables (and thus universe levels) than the
function actually captures, but through weakening the context one can easily
determine the smallest level of a function type by only the variables captured.
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τ :: Typei

Nat :: Type0 Unit :: Type0

τ :: Typei

Ref τ :: Typei+1

τ1 :: Typei τ2 :: Typej k ≥ max-level(τ1, τ2)

τ1
k−→ τ2 :: Typek

Fig. 3. λPR kinding.

The function type annotation relies on kinding the input and output types
and the types in Γ to determine the maximum universe level. We present the
kinding of types in Figure 3. The simple base types Nat and Unit are of Type0
as expected. The universe level of a function is determined by the annotation,
given that this annotation is greater than or equal to the input and output type
universe levels. And finally, a reference type is one level higher than the level of
the type it stores.

In λPR, our example of Landin’s Knot is not well typed, which we demon-
strate through type and kind annotations rather than a large derivation tree.

id = (λ x.x) : Nat
0−→ Nat

r = new id : Ref (Nat
0−→ Nat) :: Type1

f = (λ x.(! r) x) : Nat
1−→ Nat :: Type1 Type1 due to r

r := f type error, expected: Nat
0−→ Nat actual: Nat

1−→ Nat

2.1 Proof of Termination

The proof of termination for λPR uses the standard logical relations technique,
an introduction of which can be found in standard textbooks [5]. Our relation
models types as sets of normalizing expressions. We prove all well-typed expres-
sions in λPR are in the set associated with their type in Theorem 1. To be in the
set associated with its type, an expression must step to a value, which allows us
to conclude that all well typed expressions step to a value, i.e., terminate.

To model a language with mutable references, one has to model the heap,
since expressions access and modify the heap. The model of a heap is often
referred to as a world, and is modelled as a finite map from locations to sets
of values modelling types. Since each location is mapped to a set of all possible
values, the world represents any possible concrete execution heap.

However, we run into a circularity in reasoning when modelling heaps as
worlds, known as the type-world circularity.

Type = World → Set of Terms
World = Loc ⇀ Type
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VJRef τKi+1(Wi+1)
def
= {l | Wi+1(l) = VJτKi}

VJτi
k−→ σjKk(Wk)

def
= {λ x : τi.e | ∀W ′

k ⊒k Wk, v ∈ VJτKi(⌊W ′
k⌋i).e[v/x] ∈ EJσKj(⌈W ′

k⌉)}

Fig. 4. Value relation for reference and function types.

To model a type, we take in a world and produce a set of terms representing
that type. The world maps locations to types and must also take in a world,
resulting in the following equation with an inconsistent cardinality, that is, the
set must contain itself: World = Loc ⇀ (World → Set of Terms).

Step-indexed logical relations were introduced by Ahmed [2] to model lan-
guages with mutable references, where the type-world circularity is eliminated
using a decreasing number k. Using step-indexing, the equations become:

Typek+1 = Worldk → Set of Terms
Worldk = Loc ⇀ Typek

Unrolling Worldk, we have the following consistent equation Worldk = Loc ⇀
(Worldk−1 → Set of Terms. In previous work by Ahmed, the decreasing metric k
is determined by the number of steps of reduction that an expression takes. Given
an expression e ∈ Typek+1(Wk), the expression e steps “safely”, i.e., without type
errors, for k+1 steps. Ahmed hints that there is a way to stratify types based on
syntax, but chooses this alternative semantic approximation in order to model
arbitrarily quantified types.

We take the opposite approach to Ahmed and stratify the types based on
syntax. The decreasing metric in the type-world equations is instead based on
the universe level of a type. The resulting equations are also slightly different,
where the universe level matches the world level, and a world level is increased
by one based on the universe level of the mapped types.

Typei = Worldi → Set of Terms
Worldi+1 = Loc ⇀ Typei

Unrolling Worldi+1, we have the following consistent equation Worldi+1 = Loc ⇀
(Worldi → Set of Terms). These equations correspond closely to our kinding rule
for references, where reference type Ref τ is of Typei+1, given τ is Typei. The
type Typei+1 has access to Worldi+1, that is, locations mapping to Typei, just
as the reference at Typei+1 has access to τ at Typei. One may also notice
the absence of World0, where locations would be mapped to Type−1, and this
corresponds to the idea that values at Type0 do not need access to the heap.
Another interpretation is that these values are valid in any world, because they
do not access or update the heap, and thus any world at any level can stand in
for World0.

Since the decreasing metric is included in the syntax, the resulting logical
relation reads as a simpler version of a step-indexed logical relation, since each
expression no longer needs to be paired with a step index k. In Figure 4, we
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World extension
W ′

k ⊒k Wk ⇐⇒ dom(Wk) ⊆ dom(W ′
k) ∧ ∀l ∈ Wk.W

′
k(l) = Wk(l)

Lowering
⌊Wk⌋i = {(l,VJτKj) | j < i}
Lifting

⌈Wk⌉ = λi.
{λl.Wk(l), 0 < i ≤ k
∅, otherwise

Fig. 5. Additional definitions for worlds.

present the value relation for reference and function types. The resulting sets
are simply sets of values. The value relation indexes the world at the same level
as the universe, avoiding the type-world circularity and ensuring that values are
not accessing locations beyond their world level.

The set of values for a reference type Ref τ is indexed by a number i+1, since
the universe level of Ref τ is always i + 1 for τ ’s level i. The world associated
with the type Ref τ is also at level i+1. Then, the set of values for type Ref τ
is all the locations in the current world that map to the set of values associated
with τ ,i.e., VJτKi. The level of worlds associated with such values is necessarily
lower than that of the current world Wi+1, since the set is indexed by i.

The set of values for a function type τ
k−→ σ relies on additional definitions

presented in Figure 5. The first definition is world extension ⊒k, which describes
a future world W ′

k with respect to the world Wk. World extension is necessary
because a function can be applied later in a future heap, and so the model
must include function values valid in future worlds. The relation guarantees that
W ′

k has as many locations as Wk at the same types, but may have additional
locations allocated.

The next definition lowers a world Wk to level i. Lowering a world is necessary
since the values in the relation VJτKi rely on a world indexed at the same level i.
However, the available world W ′

k is at level k, which is potentially incompatible
with level i. We use the lower operation to remove all locations that map to
types with levels higher than level i− 1. The resulting world ⌊W ′

k⌋i is a Worldi
since there are no locations mapping to types with level greater than i− 1. This
lower operation can be considered a form of semantic garbage collection.

The final definition lifts a world Wk to a world that is an intersection of
worlds at all possible levels, denoted as W = ∀i.Worldi. Such a world W is used
in the expression relation, since an expression may allocate and access levels
higher than its universe level i. The lift operation can be considered a “cast”
from a world with types at universe level k − 1 allocated to a world that can
allocate at higher levels. The current allocated locations in the resulting world
are the same as Wk, and any other locations at higher levels than k have yet to
be allocated, hence denoted as ∅.

The value relation is defined over a fully annotated function type, where the
universe levels of both the input type τ and output type σ are known. Kinding
types is easy as shown in Figure 3, and the levels are necessary for indexing the
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EJτKi(W)
def
= {e | ∀W′ ⊒ W, h′ : W′.⟨h′ | e⟩ →∗ ⟨h′′ | v⟩∧

∃W′′ ⊒ W′.h′′ : W′′ ∧ v ∈ VJτK(⌊W′′⌋i)}

GJ·K(W)
def
= ∅

GJΓ, x : τK(W)
def
= {γ[x 7→ v] | τ :: Typei ∧ v ∈ VJτKi(⌊W⌋i) ∧ γ ∈ GJΓ K(W)}

Fig. 6. Expression and context relations.

relations for τ and σ correctly. The set contains functions that, given any value
v in the value relation for the input type τ , the body of the function e with the
parameter x substituted with v is in the expression relation for σ.

The expression relation defined in Figure 6 describes the set of terminating
expressions associated with a type τ at universe level i. At a high level, the set
consists of expressions that step to a value v that is in the value relation for τ
at level i, that is VJτKi. The expression relation is defined over a world W at
any level because during evaluation, an expression may allocate and access levels
higher than its universe level i, as long as the final value does not depend on
them.

There are three worlds W, W′, and W′′ in the expression relation. The world
W is considered the model of the minimum or initial concrete heap needed for
evaluation. However, expressions can be evaluated in heaps larger than the initial
heap, which is why the expression relation includes the future world W′. Then,
evaluation is under a concrete heap h′ realizing world W′, denoted by h′ : W′.
The concrete heap h′ contains the same locations as W′, but maps each location
to a single value from the value relation mapped by W′. There is a final concrete
heap at the end of evaluation h′′, and there must exist a future world W′′ ⊒ W′

related to h′′. Finally, the value v resulting from evaluation is in the value relation
for type τ , with the final world W′′ lowered to i since v does not rely on any part
of the heap higher than i. Lowering also maintains the stratification invariant
since values such as functions will be guaranteed not to access the heap at levels
greater than i, and thus can be “deallocated”.

We prove λPR terminating by proving the fundamental lemma, which relies
on a substitution γ respecting the context Γ , as defined in Figure 6.

Theorem 1. If Γ ⊢ e : τ and τ :: Typei, then ∀γ ∈ GJΓ K(W).γ(e) ∈ EJτKi(W).

This theorem states that if an expression e is well typed at type τ with universe
level Typei, then e is in the expression relation for τ , i.e., e steps to a value v
at type τ . This theorem also applies to open terms by using a substitution γ.

The key takeaways from this proof is that a syntactic hierarchy of types is
able to resolve the type-world circularity by ensuring that there are no cycles
in the heap, and such a language is terminating. We need a notion of garbage
collection with the lower operation ⌊−⌋i, which potentially allows for a language
design where either the garbage collection is explicit in the syntax, or can be
inferred by the type system similar to region type-and-effect systems.
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2.2 Interpretations and Our Framework

We conclude our presentation of λPR with some intuitive interpretations of the
type system, although these connections are not yet formalized. We also present
our general framework for instantiating the type system with alternative type
universe hierarchies, and present additional instantiations in subsequent sections.

One interpretation of λPR is as a region type-and-effect system, where each
universe level is considered as one very large region. All pure values are in region
(level) 0, references to level 0 and functions that close over references are in
region (level) 1, and so on. Instead of separate typing and kinding judgments,
one could perhaps combine them into one type-and-effect judgment as Γ ⊢ e :
(τ, region i), where the effect region i describes allocation in region i and is
determined by kinding τ . Additionally, if a program is made up of values that do
not exceed region n (level n), then any regions above n can be safely deallocated.

The universe levels can also be interpreted as an allocation effect. Values of
types in universe Type0 are allocated at region 0 of the heap. Values of types in
universe Type1 are allocated in region 1 of the heap, where values have access
to region 0, but not any regions above, and so on for each additional region.
Simply based on the type, one knows where a value of a certain type will be
allocated on the heap. The structure of the heap is maintained for all programs
because values are allocated in their appropriate regions, as enforced by the type
hierarchy.

Where a function is allocated is dependent on what parts of the heap the
function relies on. Interestingly, a function may allocate and update new refer-
ences and still be considered at Type0, i.e., allocated in region 0, for example:

ex : Nat
0−→ Nat

ex = (λ x.r = new 3; !r + x)

One can consider the reference r as completely “private” to the function ex, and
r does not affect the existing structure of the heap nor does r ever leave the
function’s scope. Under this effect system, functions that do not leak effectful
values can be considered “pure” in the sense they do not depend on any part of the
heap and thus can be used in any arbitrary heap. Furthermore, the allocations
performed inside ex are essentially invisible after the computation ends, and can
freely be collected or optimized away.

There may also be an interpretation of λPR as a coeffect system [16], since the
function typing rule is dependent on the context. In coeffect systems, a function
type is annotated with an effect derived from the current context, and variables
in the context are annotated with their effects. A possible coeffect judgment for
function typing is as follows, assuming τ has level i.

Γ, x :i τ ⊢ e : σ k = max-effect(Γ )

Γ ⊢ λ x : τ.e : τ
k−→ σ

For our more general framework, we abstract the design of λPR’s type sys-
tem into a few “knobs” that can be adjusted to create different designs. The
abstraction leads to two parameters that can be adjusted between designs.
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1. The highlighted side condition for typing a function, in λPR this equation is
k ≥ max-level(Γ, τ1, τ2).

2. The relationship between the universe level of a reference type and the type
it stores. In λPR, a reference universe level was always one level higher.

What these equations create is essentially the desired algebra of the universe
levels, i.e., the values of the levels and operations over them. In λPR, the algebra
consists of natural numbers, a ≥ operator, and a successor operator for the level
of reference types.

We now explore how to adjust these parameters for alternative designs.

3 A Universe Hierarchy with Impredicativity

One type universe hierarchy already in use in dependent type theories allows one
universe level to be impredicative, and the rest of the levels are predicative [11].
The impredicative level allows propositions to quantify over their own level, i.e.,
propositions can be sound with cyclic definitions, with some limitations. We
conjecture similar reasoning can be used to distinguish between “sound” and
“unsound” cycles in the memory heap. Many data structures are encoded using
cycles, so we believe there is a correspondence between “sound” cycles for data
and “unsound” cycles resulting in nontermination.

We conjecture that full-ground references [15], i.e., references to base data
and other full-ground references, can be encoded using an impredicative universe
level. The idea is that references containing base types will remain at the same
level as the base universe Type0. Functions are not included as base types
for full-ground references, and will be at universe Type1 and above. When a
reference stores a function, the reference is no longer full-ground, and is subject
to the stratified (predicative) part of the universe hierarchy.

Adding an impredicative universe level is easily done by tweaking our two
parameters. For the function case, the equation is changed from ≥ to >, result-
ing in a system where pure functions and functions that close over full-ground
references are at Type1. Functions that close over other higher-order references
continue up the universe hierarchy similarly to λPR.

Γ, x : τ1 ⊢ e : τ2 k > max-level(Γ, τ1, τ2)

Γ ⊢ λ x : τ1.e : τ1
k−→ τ2

Without this change to >, Landin’s Knot would be well typed, since both the
function id and the function that closes over a reference f would be in the same
universe.

For reference types, the universe of a reference type now depends on the level
of what it stores. When storing a type at base universe Type0, the reference uni-
verse level remains the same. For any types above level 0, the reference universe
level is one higher.

τ :: Type0
Ref τ :: Type0

τ :: Typei i ̸= 0

Ref τ :: Typei+1
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The resulting type system has full-ground references with sound cycles at Type0,
but unsound cycles that result in non-termination are still prevented by the
stratification imposed by predicativity. We conjecture that this system is still
terminating and has the ability to create cyclic data.

The resulting system will likely have a stratified structured heap as seen in
λPR, with cycles occurring in level 0 of the heap.

 λ x . 0 + (! s)

λ x . x 

Type0Type1Type2

r

…

s
      (t , 0)

3

      (u , 0)

u

Here we have a Type0 level of the heap where base data can be allocated along
with references to base data, and thus can encode a cyclic list.

4 Type Universe Level Polymorphism

Abstracting explicit levels has been the subject of many research papers on the
design of type universe hierarchies. Universe polymorphism allows expressions
to be polymorphic with respect to universe levels, to eliminate the redundancy
of defining the same expressions at different universe levels. Current implemen-
tations of dependent type theories use three main techniques for universe poly-
morphism: explicit quantification for universe levels as done in Agda [18], user
constraints as done in Coq [17], and constraint solving based on typical am-
biguity originally developed by Huet [8] and Harper and Pollack [6] and also
implemented in Coq. Recent work by Hou et al. [7] influenced by McBride’s
crude-but-effective stratification [14] has found that an alternative system with
an explicit displacement operator is a simple and effective mechanism for uni-
verse polymorphism.

We conjecture that universe polymorphism allows us to “name” regions of the
heap, resulting in a type system similar to region type-and-effect systems. To
implement McBride’s crude-but-effective stratification version of universe poly-
morphism, our language needs an explicit displacement operator on both expres-
sions and types. Then, a value typically in one “region” of the heap can be lifted
to another region using the displacement operator.

Most base values exist in region 0 (i.e., in universe Type0), and having such
a large region that can never be deallocated is poor for fine-grained memory
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management. We then use the displacement operator to distinguish values into
different regions. For example, given a term e of type τ , suppose we would like
to allocate e not in region 0 but in some region we call β. We use the explicit
displacement operator ⇑β to do this, an operator also defined over types that
updates the kind level accordingly.

Γ ⊢ e : τ

Γ ⊢⇑β e :⇑β τ

τ :: Typeα
⇑β τ :: Typeα+β

Without adjusting the equations λPR, we can now allocate values in different
levels of the stratified heap.

 λ x . 0

r  ⇑β(λ x . x)

Type0Typeβ

λ x . (! r) x 

Typeβ+1… …

    λ x . x

When no expression relies on a particular region (level) β, any values in and ref-
erences to level β can be safely deallocated. Higher levels are considered separate
regions, and allow for fine-grained region-like memory management. The advan-
tages of this system with a lifting operator is that the system is still completely
syntax directed, whereas some region type-and-effect systems need to infer the
regions based on reads and writes.

However, because we haven’t changed the equations from λPR, the resulting
regions still have a stratified structure. We conjecture that a more advanced
system is possible, where the relationship between a reference universe level and
the universe level it stores can be specified through some other relation besides
successor.

τ :: Typeα R(α, β)

Ref τ :: Typeβ

To obtain the stratified variant, R specifies that β = α+1. However, to obtain
different heap shapes, for example a shape where values allocated in region α
are completely separate from references to α, we could specify α # β to mean
that α and β are disjoint. Alternatively, certain values and references to these
values could be allocated in the same region by specifying α = β. With this
abstraction, different heap shapes could be formed simultaneously. The pictured
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heap below has distinct regions α, β, and γ, where references in α are stratified,
references in β are in β, and γ exists to contain references separate from values
in α+ 1.

r  λ x . x 

TypeαTypeα+1

λ x . (! r) x 

Typeβ

s

Typeγ

3

t

This kinding rule is no longer syntax directed, and may result in a type
universe polymorphism system more similar to Coq, where the universes are
inferred using constraint solving. Alternatively, a user could declare universes
(regions), and constraints between them. For example, the following constraints
could be specified to create the heap visualized above, with the assumption that
reference types bump the universe level by 1 when no constraints are given.

Typeα # Typeβ # Typeγ
Typeβ+1 = Typeβ
Typeα+2 = Typeγ

These constraints specify that three regions, α, β, and γ are all disjoint. However,
references to values in region β are still in β, hence the constraint Typeβ+1 =
Typeβ . Additionally, references to level α+1, i.e., Typeα+2, will be in Typeγ ,
since the reference t is in Typeγ .

5 Conclusion

What we’ve studied in this paper is the connection between type universe hierar-
chies and memory allocation. By studying an example of non-termination using
higher-order references, we found a simple mechanism to prevent such cycles by
equipping a type system with a type universe hierarchy. The universe hierarchy
imposes a structure on the heap for all programs, and we found that the kind of
a type describes where values can be allocated on the heap. We are able to distill
the essence of this type system to two parameters, one describing the relation-
ship of a function’s type level to the levels it captures, and another describing
the relationship between a reference type level and what level it stores. These
parameters give us a theoretical framework to create type systems that enforce
different heap designs by changing the algebra of the universe hierarchy. We be-
lieve the simplicity and power of these systems with a universe hierarchy provide
a fresh foundation for new language designs for low-level memory reasoning.
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