
Dependent-Type-Preserving Memory Allocation

PAULETTE KORONKEVICH∗, University of British Columbia, Canada, pletrec@cs.ubc.ca

1 INTRODUCTION
Dependently typed programming languages such as Coq, Agda, Idris, and F*, allow programmers to

write detailed specifications of their programs and prove their programs meet these specifications.

However, these specifications can be violated during compilation since they are erased after type

checking. External programs linked with the compiled program can violate the specifications of

the original program and change the behavior of the compiled program—even when compiled

with a verified compiler. For example, since Coq does not allow explicitly allocating memory, a

programmer might link their Coq program with a C program that can allocate memory. Even if

the Coq program is compiled with a verified compiler like CertiCoq [1], the external C program

can still violate the memory-safe specification of the Coq program by providing an uninitialized

pointer to memory. This error could be ruled out by type checking in a language expressive enough

to indicate whether memory is initialized versus uninitialized. Linking with a program with an

uninitialized pointer could be considered ill-typed, and our linking process could prevent linking

with ill-typed programs. To facilitate type checking during linking, we can use type-preserving
compilation, which preserves the types through the compilation process.

In this ongoing work, we develop a typed intermediate language (IL) CC-CC𝐴 that supports

dependent memory allocation, as well as a dependent-type-preserving compiler pass for memory

allocation. The dependent-type-preserving compiler pass allocates heap space for dependent pairs

and closures from the CC-CC language developed by Bowman and Ahmed [3]. This work is

a significant step towards developing a full dependent-type-preserving compiler. In particular,

combining this pass with previous work on two major passes, CPS [4] and closure conversion [3],

a dependent-type-preserving compiler to a low-level language like C is possible.

2 TYPED MEMORY ALLOCATION
The source language CC-CC of this translation is based on the Calculus of Constructions (CC);

however, first-class functions are replaced by closed code and closures. CC-CC includes one impred-

icative universe★, and one predicative universe □. Expressions have no explicit distinction between

terms, types, or kinds, but we use the meta-variable e to evoke a term expression and A or B to evoke

a type expression. The syntax of expressions include a unit value ⟨⟩ and its type 1, let expressions
let x = e : A in e′, closed code 𝜆 (n : A′, x : A). e and dependent code types Code (n : A′, x : A).B,
closure values ⟨⟨e, e⟩⟩ as Π x : A.B and dependent closure types Π x : A.B, application e e′ (which
applies closures instead of functions), dependent pairs ⟨e, e′⟩ as Σ x : A.B and their type Σ x : A.B,
and finally first and second projection, fst e and snd e. The typing, subtyping, and conversion rules

for CC-CC are the same as given by Bowman and Ahmed [3].

The target language CC-CC𝐴 includes all the features of CC-CC, extending the syntax with

an explicit dependent memory allocation mallocx [A,B], and memory initialization operators

e[1]←e′ and e[2]←e′. CC-CC𝐴 only allocates tuples of two machine words; this suffices for our

translation, but it should not be difficult to extend the language to arbitrary length tuples. The type

of dependent pairs 𝚺 x : A𝝓 .B𝝓
includes an initialization flag 𝝓 to indicate whether the elements

have been initialized (1) or not (0), as is done by Morrisett et al. [5]. This prevents the first and

second projection from accessing unallocated memory. Finally, since closures are allocated as pairs,

we use a tag Clos e to indicate the pair should be treated as a closure.

∗
Graduate (Ph.D.) student advised by William J. Bowman, ACM number: 3780425

mailto:pletrec@cs.ubc.ca

2 Paulette Koronkevich

𝚿; 𝚪 ⊢ e : A
[Clo]

𝚿; 𝚪 ⊢ e : 𝚺 y : (Code (x1 : A1, x : A).B)1 .A1

1

𝚿; 𝚪 ⊢ Clos e : 𝚷 x : A[snd e/x1] .B[snd e/x1]

[Malloc]

𝚿; 𝚪 ⊢ A : U 𝚿; 𝚪, x : A ⊢ B : U

𝚿; 𝚪 ⊢ mallocx [A,B] : 𝚺 x : A0.B0

[Assign1]

𝚿; 𝚪 ⊢ e : 𝚺 x : A0.B𝝓
𝚿; 𝚪 ⊢ e′ : A

𝚿; 𝚪 ⊢ e[1]←e′ : 𝚺 x : A1 .B𝝓

[Assign2]

𝚿; 𝚪 ⊢ e : 𝚺 x : A1.B0
𝚿; 𝚪 ⊢ e′ : B[fst e/x]

𝚿; 𝚪 ⊢ e[2]←e′ : 𝚺 x : A1.B1

[Fst]

𝚿; 𝚪 ⊢ e : 𝚺 x : A1.B𝝓

𝚿; 𝚪 ⊢ fst e : A

[Snd]

𝚿; 𝚪 ⊢ e : 𝚺 x : A1.B1

𝚿; 𝚪 ⊢ snd e : B[fst e/x]

Fig. 1. CC-CC𝐴 Typing (excerpt)

JeK = e

JΣ x : A.BK def

= 𝚺 x : JAK1 . JBK1

J⟨e1, e2⟩ as Σ x : A.BK def

= let y =mallocx [JAK , JBK] : 𝚺 x : JAK0. JBK0 in
let y1 = y[1]← Je1K : 𝚺 x : JAK1. JBK0 in
let y2 = y1 [2]← Je2K : 𝚺 x : JAK1. JBK1 in
y2

J⟨⟨e1, e2⟩⟩ as Π x : A.BK def

= let y =mallocx [JCode (x′ : A1, x : A).BK , JA1K] in
let y1 = y[1]← Je1K : 𝚺 x : JCode (x′ : A1, x : A).BK1 .A0

1
in

let y2 = y1 [2]← Je2K : 𝚺 x : JCode (x′ : A1, x : A).BK1 .A1

1
in

Clos y2
Fig. 2. Allocation Translation (excerpt)

The typing rules for CC-CC𝐴 remain mostly the same as CC-CC; however, we now include the

heap while type checking to access tuples that have been allocated. The heap𝚿 consists of locations

with their types ℓ : A as well as locations mapped to heap values ℓ ↦→ ⟨e1, e2⟩. Small step reduction

▷ and conversion ▷∗ are defined over configurations ⟨𝚿 | e⟩ to access the allocated tuples. For

example, first and second projection of a pair are defined as follows:

⟨𝚿 | fst ℓ⟩ ▷𝜋1
⟨𝚿 | e1⟩ where ℓ ↦→ ⟨e1, e2⟩ ∈ 𝚿

⟨𝚿 | snd ℓ⟩ ▷𝜋2
⟨𝚿 | e2⟩ where ℓ ↦→ ⟨e1, e2⟩ ∈ 𝚿

The typing rules for memory allocation, initialization, closure tagging, and first and second

projection are given in Figure 1. Memory allocation, as expected, types as a dependent pair with

the initialization flags set to 0. Memory initialization changes the flag on the dependent pair type

depending on which element is initialized. Finally, [Clo] types a dependent pair as a Π type, given

the elements of the pair are closed code and its environment.

The essence of the translation is given in Figure 2. All other cases simply recursively translate

subexpressions. For pairs and closures, the translated program first initializes memory according to

the type of the dependent pair (or the closure). Then, the program initializes each element of the

pair with the result of translating the subexpressions e1 and e2. Finally, it returns the result of this
allocation, tagging it as a closure in the closure case.

Dependent-Type-Preserving Memory Allocation 3

3 TYPE PRESERVATION
Type preservation guarantees that a well-typed source program is compiled to a well-typed target

program, and is stated as follows:

Theorem 3.1. If Γ ⊢ e : A then ·; JΓK ⊢ JeK : JAK.
Since typing in dependently typed languages relies on subtyping and equivalence, and equivalence

relies on conversion, we must also prove that subtyping, equivalence, and conversion are preserved

by the allocation pass:

Lemma 3.2. If Γ ⊢ A ⪯ B then ·; JΓK ⊢ JAK ⪯ JBK.
Lemma 3.3. If Γ ⊢ e ≡ e′ then ·; JΓK ⊢ JeK ≡ Je′K.
Lemma 3.4. If Γ ⊢ e ▷ e′ then ·; JΓK ⊢ ⟨· | JeK⟩ ▷ ⟨𝚿 | Je′K⟩.

Finally, since many dependent typing rules substitute terms into types (such as [Snd]), we must

also show that substitution is preserved:

Lemma 3.5. Je[e′/x]K ≡ JeK[Je′K/x].
The proofs of all these lemmas and the main type preservation theorem follow by straightfor-

ward induction over the source derivation. Intuitively, the translation is only adding series of let
statements which explicitly allocate a pair (or closure). The final compiled program should be a

pair (or closure) of the same type.

4 FUTUREWORK
Proving type preservation to an arbitrary target language is not enough, as the target language

itself should be type-safe and consistent (that is, we cannot prove false). We prove CC-CC𝐴 to be

type-safe and consistent by providing a model in extensional CIC (eCIC). We then prove the model

preserves typing and the definition of the empty type (⊥), following a technique well explained
by Boulier et al. [2]. If CC-CC𝐴 was inconsistent, then we could produce a proof of false ⊥ and

translate it to ⊥ in eCIC; however, since no such proof exists in eCIC, CC-CC𝐴 must be consistent.

We translate each dependent pair to a dependent pair in eCIC, where each element has type

Maybe 𝐴, with a proof about which element of the pair is filled based on the initialization flags:

J𝚺 x : A0.A0K𝑀
def

= Σ 𝑝 : (Σ 𝑥 :Maybe JAK𝑀 .Maybe JBK𝑀). 𝑝 = ⟨None,None⟩
J𝚺 x : A1.A0K𝑀

def

= Σ 𝑝 : (Σ 𝑥 :Maybe JAK𝑀 .Maybe JBK𝑀). 𝑝 = ⟨Just 𝑒,None⟩
J𝚺 x : A1.A1K𝑀

def

= Σ 𝑝 : (Σ 𝑥 :Maybe JAK𝑀 .Maybe JBK𝑀). 𝑝 = ⟨Just 𝑒1, Just 𝑒2⟩
For readibility we exclude the existential quantification for each element inside Just expressions.

We then add auxiliary definitions to eCIC, maybe-snd and maybe-fst, which are guaranteed to

produce the first and second element of a pair, since they expect a pair alongside a proof that the

elements are filled:

maybe-fst : Σ 𝑝 : (Σ 𝑥 :Maybe 𝐴.Maybe 𝐵). 𝑝 = ⟨Just 𝑒, _⟩ → 𝐴

maybe-snd : Σ 𝑝 : (Σ 𝑥 :Maybe 𝐴.Maybe 𝐵). 𝑝 = ⟨Just 𝑒1, Just 𝑒2⟩ → 𝐵 [𝑒1/𝑥]
Any instances of fst and snd are then translated to maybe-fst and maybe-snd. Based on [Fst] and

[Snd], the translation of e should have the type expected by these definitions, so the model should

be type-preserving. Proving this translation to eCIC type preserving is still ongoing.

An exciting extension of CC-CC𝐴 would be an explicit free operator to deallocate memory. This

IL with free would be an interesting language to implement a garbage collector for the dependent-

type-preserving compiler model so far, giving us even further confidence in the correct evaluation of

dependently-typed programs. This IL would likely need richer specifications of memory operations,

like those provided by Hoare Type Theory [6].

4 Paulette Koronkevich

REFERENCES
[1] Abhishek Anand, Andrew W. Appel, Greg Morrisett, Zoe Paraskevopoulou, Randy Pollack, Olivier Savary Bélanger,

Matthieu Sozeau, and Matthew Weaver. 2017. CertiCoq: A verified compiler for Coq. In International Workshop on Coq
for Programming Languages (CoqPL). http://www.cs.princeton.edu/~appel/papers/certicoq-coqpl.pdf

[2] Simon Boulier, Pierre-Marie Pédrot, and Nicolas Tabareau. 2017. The Next 700 Syntactical Models of Type Theory. In

Conference on Certified Programs and Proofs (CPP). https://doi.org/10.1145/3018610.3018620

[3] William J. Bowman and Amal Ahmed. 2018. Typed Closure Conversion for the Calculus of Constructions. In International
Conference on Programming Language Design and Implementation (PLDI). https://doi.org/10.1145/3192366.3192372

[4] William J. Bowman, Youyou Cong, Nick Rioux, and Amal Ahmed. 2018. Type-preserving CPS Translation of Σ and

Π Types Is Not Not Possible. Proceedings of the ACM on Programming Languages (PACMPL) 2, POPL (Jan. 2018).

https://doi.org/10.1145/3158110

[5] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. 1999. From System F to Typed Assembly Language. ACM
Transactions on Programming Languages and Systems (TOPLAS) 21, 3 (May 1999). https://doi.org/10.1145/319301.319345

[6] Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. 2006. Polymorphism and Separation in Hoare Type Theory. In

International Conference on Functional Programming (ICFP). https://doi.org/10.1145/1159803.1159812

http://www.cs.princeton.edu/~appel/papers/certicoq-coqpl.pdf
https://doi.org/10.1145/3018610.3018620
https://doi.org/10.1145/3192366.3192372
https://doi.org/10.1145/3158110
https://doi.org/10.1145/319301.319345
https://doi.org/10.1145/1159803.1159812

	1 Introduction
	2 Typed memory allocation
	3 Type preservation
	4 Future Work
	References

